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PREFACE

The purpose of this book is to introduce the computational solutions of decision making
techniques to students, academicians and other interested parties. The book can be used to
review and refresh knowledge in business forecasting, time series analysis and business

modelling as well as for integration of academic achievements in the study process.

The book has been written based on Business Research Center’s extended seminars.
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Chapter 1. Simple Regression

1.1. Introduction

Establishment of correspondence between various types of phenomena is often crucial to make
an applicable analysis of business process. Business and economics applications make extensive
use of relationships between variables.

o Real estate agent may be interested in predicting the property price based on its area.

e Supermarket manager may wish to forecast the demand for a certain product given its
selling price.

e Medical doctor may need to know the concentration of a certain drug in the
bloodstream based on time passed after injection.

These types of relationships can mathematically be expressed as

Y =fX)
where the function f can take linear and nonlinear forms.

In many applications, the form of the relationship is not precisely known. In some situations
we are interested in the limited portion of the nonlinear relationship that can be approximated
by linear relationship to some extent. Here, the primary goal is to present linear models based
on least squares regression analyses. Once the linear relationship between variables is
established, the next task is to measure the reliability of the model. Lastly, some coefficients
measuring the strength of predictive power of the model are presented.

1.2. Correlation Analyses

The main goal of this section is to measure a linear relationship between two variables. First,
the existence of linear dependence needs to be tested. As we begin our analyses, we conclude
that if the pair of linearly related random variables X and Y is being considered, a scatter plot
of the joint observations on this pair will tend to be clustered around a straight line.
Conversely, if they are not linearly related, then the scatter plot will not follow a straight line.

Correlation coefficient has a wide range of applications in business and economics. In many
applied business and economics related problems, there is an independent variable X, and a
dependent variable Y, whose value depends on the value of X. In order to check the existence
of linear relationship between X and Y, we test the following hypothesis

Hy:p=0 (1.2.1)
Hi:p#0
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where p is the population correlation coefficient. The null hypothesis implies that there is no
linear relationship between two random variables and the alternative hypothesis implies the
opposite. As long as our interest is to test whether there is any kind of linear relationship
(negative or positive), we do not concern ourselves with the sign of the coefficient. It can be
shown that for a sample of n observations and in case of jointly normal distribution of the

random variables X and Y, the random variable

V(@ —=7?)

follows a Student’s t distribution with n — 2 degrees of freedom. In (1.2.2), r is the sample

t =

correlation coefficient defined as

Sy (1.2.3)
SySy

where the numerator is the sample covariance coefficient defined as

=1 (i = )i — ¥)
n—1

Sxy =

and the denominator of (1.2.3) is the product of sample standard deviations of X and Y given

by
o = v (x —x)? o = i —y)?
x n—1 ’ y n-1

where the sample means for X and Y are given respectively as

n n
_ 1 _ 1
x—;. Xi» Y—;. Yi-
i=1 i=1
The decision rule for the hypothesis (1.2.1) is to
rejeCt HO if t < _tn_z'a/z or t > tn—z,a/z- (1.2.4)

Here, t,,_, 4 is the number for which the random variable ¢,,_, satisfies

P(tn—z > tn—z,a) =aq

« is named as significance level of the test.
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o/2 o/2

_tod2 ta/2
Figure 1.2.1

Figure 1.2.1 illustrates that if the t statistics computed by (1.2.2) falls within any of the shaded
area called the rejection region (i.e. the condition of the decision rule (1.2.4) is met), the
hypothesis (1.2.1) is rejected. The conclusion is that X and Y are linearly related. —t,,, and

tq/2 on the graph are the same as t,_; 4/,.

Hypothesis tests for positive and negative correlations
Similarly, the following hypothesis can be tested

Ho:p 2 0
Hi:p<O0
with the decision rule

reject Hyif t < —t,_5 4.

-t

a
Figure 1.2.2
Or the hypothesis
Hy:p <0
Hi:p>0
with the decision rule

reject Hyif t > —t,,_5 4.
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t

o
Figure 1.2.3

The difference between the hypothesis (1.2.1) and the rest of two is that in the former there is
half a significance level a/2 while in the latter there is a. Since the construction of a linear
regression model makes sense when there is a linear dependence of any kind (either positive

or negative), we concentrate only on the hypothesis (1.2.1).

Example 1.2

A real estate agent, Lisa Miller is concerned about the estimation of house prices. She needs a
model to predict the price for a given house. She thinks that the most significant determinant
of a house price is its area. So, she collects the data of houses sold. The following data in Figure
1.2.4 represents the sample of 10 observations on the independent variable - house area, X,
measured in square meters, and the corresponding dependent variable — house price, Y,
measured in $1000s. (e.g. the 4™ record in the data implies that the house with 1700 square
meters was sold for $302 000). Lisa decides to construct a linear model, but she realizes that
the model will only be applicable if there actually is a linear relation between the house price
and its area. So, the first task for her is to test the presence or absence of linear relationship
between the house price and its area using the hypothesis (1.2.1). The following figure

illustrates the computations

A 6 C D £ F G H | J K
X Y r 0.865866 <--"=CORREL(B2:B11,C2:C11)"
2 1 1300 248 t 4.895369 <--"=F1*SQRT(COUNT(B2:B11)-2)/SQRT(1-F142)"
3 2 2110 308 taoozs  2.306004 <--"=T.INV.2T(0.05,COUNT(B2:B11)-2)"
4 3 1935 239
5 4 1700 302
6 5 1050 169
7 B 1455 223
8 7 2250 385
9 8 2550 367
0 9 1765 232
1 10 1600 245

Figure 1.2.4
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The cells F1, F2 and F3 compute the correlation coefficient r, t statistics from (1.2.2) and
tn-2,a/2 Tespectively. The hypothesis is tested based on a = 0.05 significance level (95%
confidence level). Note that the T.INV.2T function accepts the significance level of 0.05 as an
argument rather than 0.025 which is a/2. The reason for this is that the function itself makes
the appropriate division. According to the decision rule (1.2.4), since t = 4.8954 > tg 025 =
2.306, it can be concluded that the null hypothesis in (1.2.1) is rejected.

a/2=0.025 c/2=0.025

N .

+ :I‘:
Reject H, ' Do not reject H, " Relect Hy

tg002s 0 10025
-2.3060 2.3060

4.8954

Figure 1.2.5

So, Lisa concludes that the house price is linearly related to its area. This result was quite
expected as long as the sample correlation coefficient is 0.87. Therefore, it makes sense to
construct a linear regression model.

1.3. Simple Regression

In a simple linear regression, we model the effect of all factors other than X (in our example,
the house area) as part of random error term labeled as €. This random error term is a random
variable distributed normally with mean 0 and standard deviation o. The linear model is

Y:ﬂo‘l‘ﬂlX“l‘g.

We assume that, for predetermined values of X, there are corresponding mean values Y plus a
random term.
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(xi» yi)
Y l.l}’i = Bo + P1x; + &

X4 Xy sus X; X
Figure 1.3.1

Figure 1.3.1 represents an example of the set of observations on the pairs of (X,Y) variables.

The mean level Y for every X is represented by the population equation

Y =B + i X. (1.3.1)

The simple linear regression model provides the mathematical expectation of the value of Y
for a given value of X. Since (1.3.1) is a linear equation, the expected value of Y for a specific

value of X = x can be written as

ETY|X = x] = Bo + P1x

where f, is the Y intercept and 3 is the slope of the line. These parameter values are unknown
and must be estimated from the sample observations in a least squares sense (examined later
in the text). The actual observed value of Y given the value of X is modeled as the computed
value of Y plus an error term ¢ mentioned above. So, the actual observed value of Y can be

written as
Vi = Bo+ Pix;i + &
The estimated regression model as illustrated in Figure 1.3.2 is given by the equation

Yi=Dbo+bix; +e
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where b, and b; are the estimated values of the coefficients and e; is the difference between
the predicted value of Y on the regression line, defined as

Vi = bo + b1x; (1.3.2)

and the observed value y;.
Generally, the fitted regression equation is

Y = by + byx (1.3.2)

Y, (xi»g’i)

Figure 1.3.2

The difference between y; and J;for each value of X is defined as the residual

e, =Y — Vi =yi— (bo+ bix;)

So, there is a predicted value of Y for each observed value of X. The difference between the

observed value of Y and its predicted value is defined as the residual e.

The population regression line is just a theoretical construct. The model has to be estimated by
the available sample data. Suppose that there are n pairs of observations,
(x1,v1), (x2,V2), v, (X5, V). We need to find estimators of the unknown coefficients 8, and

p; of the population regression line.
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In order to obtain the coefficient estimators by and b, for (1.3.2°) according to the least squares
procedure, the sum of squared residuals (errors) must be minimized. Let us define the sum of
squared errors as the following mathematical function involving the by and b, coefficients

n n n
SSE =) et =Y (=907 = ) i = (by + b))’
i=1 i=1 i=1

The idea behind the least squares regression is to obtain by and b, such that SSE is minimized.

Thus, the minimization procedure (which is beyond the scope of this book) yields

b = L — DG =) _ Sxy (1.3.3)
1 n(x; — %)? s2
and
by =9 — by x (1.3.4)

Any other values of by and b, increase the SSE. As a conclusion, the line given by the equation
(1.3.2) can be interpreted as the one passing through the sample points in a “best” possible
way. The “best” in the sense that the total (squared) deviation from actual observations is at a

possible minimum. No other line achieves the same.

Assumptions of the population regression model

There are various assumptions regarding the population regression model that are stated below

for a convenient reference.

1) The random variables Y are linear functions of X plus the random error term ¢:

Yi=PBo+ B1xi + &

2) The realizations of the random variable X are the fixed numbers x;(i = 1, ...,n), which
are independent of the error terms ¢;(i = 1, ..., n).
3) The error terms ¢;(i = 1,...,n) are the random variables with the mean of 0 and

standard deviation o. This property is called homoscedasticity, or uniform variance:
Eg;=0, Eg*=0¢% for i=1,..,n
4) The random error terms &; are linearly independent of one another, so the correlation

between them is 0:
E[el-e]-] =0, forall i #j
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The scatter plot for the data in Figure 1.2.4.

Example 1.3
4 A B
1 X
2 1 1300
3 2 2110
4 3 1935
5| 4 1700
6 5 1050
7| 6 1455
8| 7 2250
9 8 2550
10| 9 1765
1 10 1600

C

248
308
239
302
169
223
385
367
232
245

D

E F

0 500

Figure 1.3.3

G H
House Price
o
® o ..
o
1000 1500

2000

2500

For Lisa it is obvious that the scatter plot shows a positive linear pattern. Next, she

computes by and b;coefficients based on the formulas (1.3.4) and (1.3.3) respectively.

The results are shown in the cells B13 and B14 in Figure 1.3.4. Alternatively, these

values could have been obtained directly from the scatter chart by right clicking on any

of the points on the chart, selecting “Add Trendline” option and checking the “Display

equation on chart” checkbox.

A B

1 X

2 1 1300
3 2 2110
- 3 1935
5 4 1700
6 5 1050
7 6 1455
8 7 2250
9 8 2550
10 9 1765
1 10 1600
12

14

C

248
308
239
302
169
223
385
367
232
245

D

450
400
350
300
250
200
150
100

50

E F

y=0.1288x + 43.713

0 500

Figure 1.3.4

G H
House Price
[
A ..
¢
1000 1500

by 43.71305 <--"=AVERAGE(C2:C11)-AVERAGE(B2:B11)*B14"
bl 0.128754 <--"=COVARIANCE.S(B2:811,C2:C11)/VAR.S(B2:B11)"

2000

2500

So the intercept coefficient by = 0.1288 and the slope b; = 43.713. Thus, Lisa obtains the
ultimate linear equation (1.3.2°) to be

y =43.7131 + 0.1288x

(1.3.5)

3000

3000
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Both of these values carry important interpretations. In the context of an example of the house
price depended on its price, Lisa has by = 43.7131 which seemingly indicates that a house
with 0 square feet area costs $43.7131, which makes no sense. However, the value of b, just
indicates that, for houses within the range of sizes observed, $43.7131 is the portion of the
house price not explained by square meter. The value of b; = 0.1288 on the other hand, tells
us that the average value of a house increases by 0.1288($1000) = $128.8 on average, for each
additional square meter of size. b; can otherwise be regarded as the sensitivity coefficient. It
indicates how sensitive a house price is with respect to its area. So, having the equation (1.3.5),
Lisa can estimate the house price in terms of a given value of its area.

1.4. Measures of Variability

The estimated regression model developed so far explains the changes in the dependent
variable Y that arise from changes in independent variable X. If there was an only random
variable Y and its sample observations, then the central tendency of Y would be measured by
the average value of Y being y, and the total variability of the observed values of Y about y
would be measured by »I-;(v; — ¥)?. However, as long as there is an independent variable X
whose linear function is Y, it is expected that the linear equation would be closer to the
individual values of Y and therefore, the variability of the individual values of Y about the

linear equation would be smaller than about the average value Y.

At this point, we are ready to introduce measures of variability. The analyses of variance,
ANOVA, for least squares regression is developed by splitting the total variability of Y into
explained and unexplained (or error) portions. The figure 1.4.1 illustrates a single observed
point. The deviation of the point value from the average value ¥ is the total variation y; — .
This variation consists of two components, the explained component by the linear
equation J; — ¥ and an unexplained or random component which we call the residual e; =

yi —Yi
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(x2,¥2)

X X X
Figure 1.4.1
YVi=¥=0i=»+ i =)
We defined these deviations just for a single point illustrated in the figure. If we sum such
deviations for all observed points from the sample, we obtain

Zn:(yi - ) =Zn:(yi —¥)? +Zn:(yi —$,)?2 (1.4.1)
i=1 e i

This equation can be expressed as
SST = SSR + SSE

Here, we see that the total variability - SST of the sample observed points about the mean can
be split into an explained portion — SSR, representing the variability explained by the slope
coefficient by, and an unexplained portion - SSE. The source of the latter is the uncertainty
that arises from factors other than the explanatory variable X. The left side of the equation is

the sum of squares total

L (1.4.2)
SST =) (i = 3V
i=1
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The portion of variability explained by the regression model is the sum of squares regression
and is given by

n n (1.4.3)
SSR =) (9= 3)* = b7 ) (v, — )
i=1 i=1

From here it is clear that the portion of variability explained by the regression depends solely
on the value of b, coefficient and squared deviation in X. The deviations about the regression
line, or the residual value, which computes the unexplained portion of variability or the error
sum of squares can be defined as

L (1.4.4)

n n
2 ~
SSE =) (i = (o +byx))’ = Y (i =90° = ) e
i=1 i=1

i=1

From Figure 1.4.1, it is clear that the regression line is closer to the data point as the value
of ¥y; — ¥ increases and hence, makes the value of y; — J; shrink. Similarly, the fit of the
regression equation to the observed sample data improves if the value of SSR increases and
correspondingly, the value of SSE decreases.

Example 1.4

In the previous section, Lisa Miller got the model predicting a house price for a given value of
its area. So, she can use the model for the estimation of house prices. However, her colleague,
Mary Wilson suggests that even though she has the model constructed, it would be better to
check the reliability of the predictions made by the model. So, she now wants to determine
how accurate her predictions are. She knows that changes in house area should cause changes
in house price. She decides to measure the variability in house price by SSE, SSR and SST.
Once having the values of b, and b, in place, she proceeds to compute the values of SSR, SSE
and SST.
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A B C D E F G H
X Y N

2 1 1300 248 211.0927 3685.377

3 2 2110 308 315.3831 1899.485
4 3 1935 239 292.8512 443.1534

5 4 1700 302 262.5941 84.74823

6 5 1050 169 178.9043 8629.611

7 6 1455 223 231.0495 1660.604

8 7 2250 385 333.4086 3795.617

9 8 2550 367 372.0347 10046.99
10 9 1765 232 270.9631 0.700399

1 10 1600 245 249.7188 487.581
12
13| by  43.71305 SSR 30733.86 <--"=SUM(E2:E11)"
14| b, 0.128754 SSE 10259.74 <--"=SUMX2MY2(C2:C11,D2:D11)"
15 SST 40993.6 <--"=E13+E14"

Figure 1.4.2

First, the estimated values of Y for each observed value of X are computed in the D column
(by the function “=$B$13+$B$14*B2” in the cell D2). The column E contains elements of the
SSR (computed by the function “=(D2-AVERAGE($C$2:$C$11))"2” in the cell E2) which
when summed, gives us the value of SSR computed in the cell E13. On the other hand, in order
to compute the value of SSE, as long as there are the values of Y and ¥ listed in the columns
C and D, the function SUMXMY?2 can be used which performs the summation for the squared
differences of the elements of the first and second arrays passed as arguments. The values of
these measures are not self - explanatory at this point. So, Lisa’s concern about the accuracy of
predictions made by the model still remains unaddressed. However, having the values of
SSR,SSE and SST computed, the next step is to measure the explanatory power of the
regression equation using these measures of variability which helps determine the precision of
the model.

1.5. The Explanatory Power of a Linear Regression Equation

In the previous section, based on the Figure 1.4.1, we claimed that greater the value of SSR,
better the fit of the regression equation to the sample data. As long as SST = SSR + SSE,
greater value of SSR implies less value of SSE in SST and thus, the explained portion of
variation occupies part of unexplained portion of variation. The proportion of explained part
of variation into the total variation in the dependent variable is captured by the coefficient of

determination, R? defined as follows



14 T. Toronjadze (ed.)

SSR SSE (1.5.1)

RZ=——=1-"2
SST SST

Closer this value is to one, greater the explained portion of variation in the dependent variable
and thus, better the estimation accuracy. It can be shown that the coefficient of determination
coincides the square of the correlation coefficient.

R? =12 (1.5.2)

This equation has geometric interpretation. R? is close to one when the absolute value of the
correlation coefficient is close to one. This happens when there is a strong linear relationship
between two random variables and therefore, the regression line has a high explanatory power.
The following Figures illustrate several cases.

Case 1: R =1

Y

X
rr=1 X r=1

Figure 1.5.1

The coefficient of determination equals one if and only if SSR = SST, leaving no space for
SSE. In order for SSE to be zero, there must not be a deviation from the regression line to any
of the observed point. Thus, all points lie on the regression line. This implies perfect
correlation.

Case2: 0 < R?’< 1

Y

Figure 1.5.2
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Figure 1.5.2 shows positive and negative correlation coefficients. In this case the R? is not
equal to one, meaning there are some random components introducing unexplained portion
of variation in the value of Y and therefore, there are some deviations from the regression line
to the sample points.

Case 3: R?=0

© ® oo
“ 2
o © O @
o %o
X
r=0
Figure 1.5.3

Correlation coefficient being zero implies the absence of linear dependence between two
random variables. Similarly, the coefficient of determination being zero implies the absence of
explained portion of variation in the value of the dependent variable. So, SSR = 0 and SSE =
SST, meaning the random, unexplained component occupies the sum of squares total
completely.

Example 1.5

In the previous example, Lisa computed the values of SSR, SSE and SST. However, she could
not draw any conclusion solely based on these numbers. Now she computes the value of R?
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A 2 C D £ F G H
-_ X Y y & -y)?
2 1 1300 248 211.0927 3685.377
3 2 2110 308 315.3831 1899.485
4 3 1935 239 292.8512 443.1534
5 4 1700 302 262.5941 84.74823
6 5 1050 169 178.9043 8629.611
7 6 1455 223 231.0495 1660.604
8 7 2250 385 333.4086 3795.617
9 8 2550 367 372.0347 10046.99
10 9 1765 232 270.9631 0.700399
11| 10 1600 245 249.7188 487.581
12
13 b, 43.71305 SSR 30733.86 <--"=SUM(E2:E11)"
14 b,  0.128754 SSE 10259.74 <--"=SUMX2MY2(C2:C11,02:D11)"
15 SST 40993.6 <--"=E13+E14"
16 R? 0.749723 <--"=E13/E15"
Figure 1.5.4

The cell D16 contains the value of R? coefficient which is nearly 75%. In the context of the
house prices, Lisa interprets this coefficient value as the percent of total variability in house
price that is explained by the house area. So, she concludes that 75% of variation in the house
price has been explained by the house area making it a significant factor determining the house
price. There is still 25% unexplained. So, Lisa thinks that this is not enough to make an accurate
prediction of a house price given its area. Concerned with precision of the prediction, she starts
to think of other factors that might affect the house price and increase the coefficient of
determination and hence, the prediction accuracy. These additional factors will be examined

in the section of multiple regression.

1.6. Standard Error of the Estimate and Variance Estimators of the Regression
Coefficients

In section 1.4, the sum of squared errors was interpreted as the unexplained portion of
variation in the dependent variable Y around the mean. It can also be used to measure the

variation of observed Y values from the regression line.

2. nef _ SSE (1.6.1)
¢ n-2 n-=-2




Decision Modelling 17

The square root from (1.6.1) is the standard error of the estimate s, = ,/sZ and measures the
average dispersion of observed values of Y about the regression line. This effect is illustrated

in the following figure

b ¢

large s, X

Figure 1.6.1

Small s, implies the values of Y from the sample observations closely scattered around the
regression line, while the large value of s, implies the opposite. Note that the value of s, is not
self - explanatory by itself. Its value cannot tell us whether it is small or large. The magnitude
of s, should always be judged relative to the size of the Y values in the sample.

In section 1.3, b; was defined to be an unbiased estimator for ;. The variance for this slope

coefficient of the regression line is estimated by

sé sé (1.6.2)

i —%? (n—1)s?

2 _
Sbl_

while the population variance is

2 2
2 o o

O TTH (-2 (n—1)sZ

The square root of (1.6.2), s,, = /sgl is a measure of variation in the slope of regression lines

from different possible samples. Smaller value of s;,, implies a more precise estimate of the f;

coefficient by b, and vice versa. This fact is illustrated in the following figure
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small S, X large S, X

Figure 1.6.2
Similarly, the variance estimator for the regression intercept coefficient b, can be derived as

1 2 (1.6.3)
2 _ (2 2
Sbo (n + (n-— 1)s,%> Se

Example 1.6

Lisa Miller computes the standard error of the estimate, the sample variance estimator and the

variance estimator for the slope and intercept coefficients as follows

A B C D E F G H

1 X Y y & -y)?

2 1 1300 248 211.0927 3685.377

3 2 2110 308 315.3831 1899.485

4 3 1935 239 292.8512 443.1534

5 4 1700 302 262.5941 84.74823

6 5 1050 169 178.9043 8629.611

7 6 1455 223 231.0495 1660.604

8 7 2250 385 333.4086 3795.617

9 8 2550 367 372.0347 10046.99

10 9 1765 232 270.9631 0.700399

11| 10 1600 245 249.7188 487.581

12

13| by, 43.71305 SSR 30733.86 <--"=SUM(E2:E11)"

14 b,  0.128754 SSE 10259.74 <--"=SUMX2MY2(C2:C11,D2:D11)"

15 SST 40993.6 <--"=E13+E14"

16 R? 0.749723 <--"=E13/E15"

17

18 Sb,  47.9489 52 1282.467 <--=E14/(COUNT(C2:C11)-2)"
Sb;  0.026301 Se 35.81155 <--"=SQRT(E18)"

L=

Figure 1.6.3
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The cells E18 and E19 contain the values of sZ and s, respectively. As noted above, the value
of s, itself cannot tell whether it is large or small. Lisa interprets the value of s, (which is
35.81) as the average dispersion from the regression line of the sample observations and
concludes that it is relatively small compared to the values of Y. So, the observed values are
scattered close around the regression line. The cell B18 computes the value of s}, according to
(1.6.3) contains the formula
“=SQRT((1/A11+AVERAGE(B2:B11)"2/(A10*"VAR.S(B2:B11)))*E18)” and the cell B19
computes the value of s, based on (1.6.2) by the formula “SQRT(E18/((COUNT(C2:C11)-
1)*VAR.S(B2:B11)))”.

1.7. Hypothesis for the Regression Slope Coefficient

In section 1.3, the hypothesis for the population correlation coefficient was tested. The null
hypothesis was formulated as Hy: p = 0 against the alternative H;: p # 0. Rejection of the null
hypothesis implies that the two random variables are linearly related. Existence of the linear
relationship between two random variables can similarly be tested by the following hypothesis

Hy: B = 0 (no linear relationship) (1.7.1)
Hi:p, #0 (linear relationship)

Under fairly general conditions, it can be concluded that the random variable

:b1—ﬁ1:b1—0_ﬁ (1.7.2)

t =
Sb1 Sb1 Sb1

follows the Student’s t distribution with n — 2 degrees of freedom. So, the decision rule for the
hypothesis is to

reject Hyift = ty_54/2 OF t<—ty_34/2 (1.7.3)

In (1.7.2), B, is taken to be O since in the hypothesis (1.7.1), its value is tested against 0.
Similarly, the hypothesis can be tested for any other value of ;. In addition, there can be the
hypothesis involving inequalities. Taking the specific value of the slope coefficient f; and the

significance level a, all cases are summarized below for a convenient reference:
Case 1: To test the null hypothesis
Ho: By = 1 or Ho: B < By

against the alternative
Hy: By > By
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the decision rule is to

b _ *
reject Hy if t = 1= B >th-2q
Sb1
Case 2: To test the null hypothesis
Ho: By = By or Hy: By = By
against the alternative
Hy: By < By
the decision rule is to
b _ *
reject Hy if t = Sl < —th-2a
Sb1
Case 3: To test the null hypothesis
Ho: By = B1
against the alternative
Hy: By # Bq
the decision rule is to
b, — B b, — B
reject Hy if t = 15 b > th_gap 0Tt = 15 b < —th-2,a/2
b1 bl

The last one is the generalized version of (1.7.1) with ] being any number (not necessarily 0).

Remark: At this point, there are two hypotheses at our disposal testing the linear dependence
of two random variables. So, there is no difference in which one is used when it comes to
simple regression with a single explanatory variable. However, as we will see later, in multiple
regression, the hypothesis (1.7.1) can be tested for any independent variable separately. Hence,
it answers the question whether the dependent variableY is in linear relation with that specific
independent variable.

In simple regression, there is another way of testing the linear dependence using the F test.
The hypothesis is similar to (1.7.1)

Hy: B; = 0 (no linear relationship)
Hi:p, #0 (linear relationship)

It can be shown that
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MSR (1.7.4)

F=sE

follows and an F distribution with the numerator degrees of freedom of 1 and the denominator
degrees of freedom n — 2. (Note that the F distribution is characterized by two degrees of
freedom). In (1.7.4) mean squared regression is defined to be

SSR
MSR = 220 (1.7.5)
k
where k is the number of explanatory variables in the regression model. Since the simple
regression has only one explanatory variable (k = 1), the value of MSR = SSR. On the other

hand, mean squared erroris defined to be

So, in simple regression (1.7.4) can be rewritten as
__SSR
=2
The decision rule for the hypothesis is to
reject Hyif F > Fy , 54 (1.7.7)

where F; ,,_; o is the critical value corresponding to a significance level satisfying

P(Fin—z > Fin_24) = @

Example 1.7

Similarly to the Example 1.2, where the hypothesis was tested for the population correlation
coefficient, here the hypothesis (1.7.1) is tested. As long as both of the hypothesis carry the
same interpretation, in particular, rejection of the null hypothesis means the existence of linear
relation between the random variables X and Y, it is quite expected that both hypotheses give
the same answer.
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A B C D £ F G H | )
1 X Y y G -y)* F 23.96464 <--"=£13/E18"
2 1 1300 248 211.0927 3685.377 Figoo0s 5.317655 <--"=F.INV(0.95,A2,A9)"
3 2 2110 308 315.3831 1899.485

4 3 1935 239 292.8512 443.1534

5 4 1700 302 262.5941 84.74823

6 5 1050 169 178.9043 8629.611

7 6 1455 223 231.0495 1660.604

8 7 2250 385 333.4086 3795.617

9 8 2550 367 372.0347 10046.99

10 9 1765 232 270.9631 0.700399

11| 10 1600 245 249.7188 487.581

12

13 by, 43.71305 SSR 30733.86 <--"=SUM(E2:E11)"

14 b,  0.128754 SSE 10259.74 <--"=SUMX2MY2(C2:C11,D2:D11)"

15 SST 40993.6 <--"=E13+E14"

16 R? 0.749723 <--"=E13/E15"

17

18| Sb,  47.9489 sZ 1282.467 <--=E14/(COUNT(C2:C11)-2)"

19| 52 0.026301 Se 35.81155 <--"=SQRT(E18)"

20

21 t 4.895369 <--"=814/B17"

22 tgo0.025  2.306004 <--"=T.INV.2T(0.05,A9)"

Figure 1.7.1

The hypothesis (1.7.1) is tested by the significance level of « = 0.05. The cells E21 and E22
contain the values of the ¢ statistics from (1.7.2) and tg g o»5. Note that the value of t statistics
exactly matches the one computed for the hypothesis (1.2.1). It can be shown that the value
of t statistics computed by (1.2.2) and (1.7.2) are equal. This computation was illustrated in
Figure 1.2.4, cell F2.

The cell H1 contains the value of the F statistics and the cell H2 contains the critical value
F1 g 0.05- Note that unlike the T.INV.2T function in the cell E22, the function F.INV in the cell
H2 receives 1 — a = 0.95 as an argument. The rest of the two arguments are the numerator

degrees of freedom (equal to 1) and the denominator degrees of freedom (equal to 8).

1.8. Hypothesis for the Regression Slope Coefficient Tested by p-value

As an alternative to the techniques examined in Section 1.7, all of the hypotheses can be tested
by comparing probabilities rather than comparing the corresponding statistics (t or F) to the

critical values (t,_;,¢/2 OF F1pn_2q)-

Consider the hypothesis (1.7.1) which is restated below
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Hy: B; = 0 (no linear relationship)
Hy:p; # 0  (linear relationship)

The t statistics defined by (1.7.2) is
b=y _bi=0_ by

Sb1 Sb1 Sb1

t

According to the rejection rule (1.7.3), this value must be compared to the critical value
tn—2,a/2 and decide to reject Hy if [t| > |t,_5, a/2|. This fact can be illustrated as follows

a2 al2

3 | J :
Reject Hp Do not reject Hp 1L} Rejict Ho

“t2a2 O th2.an

Figure 1.8.1

In the figure above, t > t,,_; 4/,. Thus, the t value falls within one of the rejection regions and
the null hypothesis Hy must be rejected. In this case we have P(tn_z > tn—z,a/z) = qa/2 and
P(t,_, >t) < a/2. So, the area under the density function from t to the right is smaller than
the shaded area which is @/2. So, instead of comparing the values of t and ¢,,_; 4/,, We can
compare the probabilities (areas under the curve of the probability density function).

Therefore, the decision rule (1.7.3) can be translated as
reject Hy if P(t,,_, > t) < a/2.

More formally, (for positive t) we can define probability value (p-value) as

p —value = 2P (t,_, > t) (1.8.1)

and this value needs to be compared with the significance level @ and we have the final version

of the decision rule:

reject Hy if p — value < a (1.8.2)
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and this is equivalent to (1.7.3). Note that in the discussion above, the assumption above is
the positivity of value of ¢.

On the other hand, if ¢ is positive and ¢ < t,_; 4/, then the area to the right of ¢t would be
greater than the area to the right of ¢,,_, 4/, and according to (1.7.3) the hypothesis H, would
not be rejected. This fact is illustrated on the Figure 1.8.2 below

o2 o/2

o L N R

) Reject Hy Do not reject GT Reject Hy
thoa2 O ¢ th-2.02

Figure 1.8.2

In this case (1.8.2) does not hold and H, is not rejected. The convenience of using p-values
rather than comparison of t values is clear when using a statistical computer package (as shown
in Section 1.10) where the p-value for a given hypothesis is generated by a computer. What

remains is to simply compare this value to the significance level a.
In section 1.7, the same hypothesis was tested with the F test. The coefficient F computed by
(1.7.4) is compared with the critical value F; ,,_; , and the decision rule (1.7.7) states to

reject Hyif F > Fy ,_5 4

which is equivalent to

reject Hy if p — value = P(F1,_5 > F) < P(F1n2> Fin24) =@ (1.8.3)

The following figure illustrates the condition of (1.8.3) met
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F stats
o

hd

*Do not rejectHy |  RejectHyp

M

Fl.n— 2,a
Figure 1.8.3

On the other hand, if the F statistics falls within the non-rejection region (i.e. F < F; ,_54),
this implies that p — value = P (Fl,n—z >F ) > P(Fl,n—z >F 1,n—2,a) = q and is illustrated below

a

/
i .F

*Do not rejectHo |  RejectHyp

Fin-2.a
F stats

Figure 1.8.4

Similarly to the hypothesis test related to Student’s t distribution, the p-value can directly be

compared to the significance level a.

Example 1.8

The figure below illustrates the computations of p-values in both ways.
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A B C D E F G H | J
1 X Y y O -¥)? F 23.96464 <--"=E13/E18"
2 1 1300 248 211.0927 3685.377 Figoos  5.317655 <--"=F.INV(0.95,A2,A9)"
3 2 2110 308 315.3831 1899.485 p-value  0.001201 <--"=F.DIST.RT(S16,1,8)"
4 3 1935 239 292.8512 443.1534
5| 4 1700 302 262.5941 84.74823
: 5 1050 169 178.9043 8629.611
7 - 1455 223 231.0495 1660.604
8 7 2250 385 333.4086 3795.617
9 8 2550 367 372.0347 10046.99
10| 9 1765 232 270.9631 0.700399
11| 10 1600 245 249.7188 487.581
12
13 by, 43.71305 SSR 30733.86 <--"=SUM(E2:E11)"
14 by 0128754 SSE 10259.74 <--"=SUMX2MY2(C2:C11,D02:D11)"
15 SST 40993.6 <--"=E13+E14"
16 R? 0.749723 <--"=E13/E15"
17
18| Sb,  47.9489 s2 1282.467 <--=E14/(COUNT(C2:C11)-2)"
19| Sb;  0.026301 Ss 35.81155 <--"=SQRT(E18)"
20
21 t 4.895369 <--"=B14/B17"
22 ts0025  2.306004 <--"=T.INV.2T(0.05,A9)"
23 p-value  0.001201 <--"=T.DIST.2T(E21,A9)"

Figure 1.8.5

The p-value (1.8.1) is computed in the cell E23 by the function T.DIST.2T(E21,A9). This
function receives the value of t and the degrees of freedom as arguments and returns the
probability in (1.8.1). Similarly, the p-value (1.8.3) is computed in the cell H3 by the function
F.DIST.RT(S16,1,8). This function receives the F value, first degrees of freedom and second
degrees of freedom as arguments and returns the probability in (1.8.3). As long as there is only

one explanatory variable in the regression model, these two values are the same.

1.9. Confidence Intervals

In Section 1.3, we defined b, and b, to be unbiased estimators of 5, and f; respectively. So,
the most likely values of the population intercept and slope coefficients are their sample
estimates. However, it would be useful to know by high probability the interval within which
the actual population intercept and slope coefficients will fall. The confidence intervals for S,

and B, corresponding to a given confidence level 1 — « are

bo — tn_2,a/25p, < Bo < b + tn_2.4/25p, (1.9.1)
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by — th_2a/25p, < B1r < by + th_24/25p, (1.9.2)

Once having this information, one can make predictions or forecasts for the dependent
variable for a given value of the independent variable. For a specific value of the independent
variable x,, ., the corresponding forecast value of the dependent variable is

Yn+1 = Bo + P1Xni1 + €ns1

which has an expectation of

Elyn+1lxn41] = Bo + B1Xn+1

Suppose that the population regression model and the standard assumptions examined in
Section 1.3 hold. Let by and b, be the least squares estimates of 5, and f3;, based on the sample
observations (xq,¥1), (X2,¥2), ., (Xn, ¥n). Then it can be shown that the following are
confidence intervals corresponding to 100(1 — a)% confidence level.

1. For the forecast of the actual value resulting for Y,,, 4, the prediction interval is

1 (xpgq — %)2 (1.9.3)

Pnt1 T tnozaseSe |1+ —+ s
Yn+1 T Uy 2,a/2 e\/ n Z?:l(xi _f)z

So, the most likely value of the dependent variable for a specific value of the independent
variable x,, 1 is J,41. However, the actual value of the dependent variable will fall within the
interval of (1.9.3) by 100(1 — a)% confidence level.

2. For the forecast of the conditional expectation E[Y;,,1|X;4+1], the confidence interval is

L (G = D)2 194

Iner £ tn-z.afese jz TEE - 02

Here the confidence interval is constructed for the average value of the dependent variable for
a fixed value of the independent variable x,,,. The average value of Y will fall within the
interval given by (1.9.4) by 100(1 — a)% confidence level.

All of the variables appearing in formulas (1.9.3) and (1.9.4) are examined above in the text.



28 T. Toronjadze (ed.)

Example 1.9

Lisa Miller continues gathering information about the model and constructs the confidence
intervals for f; and f;. The results are shown in Figure 1.9.1

A B C D 0 . G H [ )
1 X Y y @ -y)* F 23.96464 <--"=E13/E18"

2 1 1300 248 211.0927 3685.377 Figoos  5.317655 <--"=F.INV(0.95,A2,A9)"
3 2 2110 308 315.3831 1899.485 p-value  0.001201 <--"=F.DIST.RT(S16,1,8)"
4 3 1935 239 292.8512 443.1534

5 4 1700 302 262.5941 84.74823 LCL ucL

6 5 1050 169 178.9043 8629.611 -66.8573 Bo  154.2834

7 6 1455 223 231.0495 1660.604 0.068103 B 0.189404

8 7 2250 385 333.4086 3795.617

9 8 2550 367 372.0347 10046.99

10 9 1765 232 270.9631 0.700399

11 10 1600 245 249.7188 487.581

12

13| b, 43.71305 SSR 30733.86 <--"=SUM(E2:E11)"

14 b,  0.128754 SSE 10259.74 <--"=SUMX2MY2(C2:C11,D2:D11)"

15 SST 40993.6 <--"=E13+E14"

16 R? 0.749723 <--"=E13/E15"

17

18| Sb,  47.9489 s2 1282.467 <--=E14/(COUNT(C2:C11)-2)"

19| &, 0.026301 Se 35.81155 <--"=SQRT(E18)"

20

21 t 4.895369 <--"=B14/B17"

22 tg0.025  2.306004 <--"=T.INV.2T(0.05,A9)"

23 p-value  0.001201 <--"=T.DIST.2T(E21,A9)"

Figure 1.9.1

The cell G6 and G7 contain the lower confidence levels (LCL) and the cells 16 and I7 contain
the upper confidence levels (UCL) for 5, and f3; respectively. Lisa interprets these levels as the
minimum and maximum values S, and f; can obtain in 100(1 — @)% of times. When it comes
to the house example where the house price is explained by the area as an independent
variable, the lower confidence level of -66.8573 (a negative value) makes no sense. In Section
1.3, by was defined to be the portion of the value of Y unexplained by a given X variable.
Similarly, the negative value for the house price (which makes no sense) can be regarded as

the value that arises from insufficiency of explanatory power of the X variable.

The confidence interval for these coefficients provide useful information about the reliability
of the model. Now Lisa is interested to predict the price of a house with 1550 square meters of

darea.
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A B C D E F G H [ | K L M
X Y b @ =97 (x—-x)* 10
2 1 1300 248 211.0927 3685.377 222312.3 Z(x,-—f)2 1853953 <--"=SUM(F2:F11)"
3 2 2110 308 315.3831 1899.485 114582.3 =
4 3 1935 239 292.8512 443.1534 26732.25
5 4 1700 302 262.5941 84.74823 5112.25 1 V11
& 5 1050 169 178.9043 8629.611 520562.3 1550 243.2811 <--"=B13+B14*J6"
7 6 1455 223 231.0495 1660.604 100172.3
8 7 2250 385 333.4086 3795.617 228962.3 LCL ucL
9 8 2550 367 372.0347 10046.99 606062.3 155.6331 Y11 330.929
10 9 1765 232 270.9631 0.700399 42.25 213.9137E[Y), |X,,] 272.6485
1] 10 1600 245 249.7188 487.581 29412.25
13| by  43.71305 SSR 30733.86 <--"=SUM(E2:E11)"
14| b, 0.128754 SSE 10259.74 <--"=SUMX2MY2(C2:C11,D2:D11)"
15 SST 40993.6 <--"=E13+E£14"
R? 0.749723 <--"=E13/E15"
18| Sb,  47.9489 s2 1282.467 <--=E14/(COUNT(C2:C11)-2)"
19| Sb.  0.026301 Se 35.81155 <--"=SQRT(E18)"
20

ra
-

4.895369 <--"=B14/B17"
22 tg0.025 2.306004 <--"=T.INV.2T(0.05,A9)"
23 p-value  0.001201 <--"=T.DIST.2T(E21,A9)"

" |

Figure 1.9.2

So, for the given area of x;; = 1550 square meters, Lisa computes the predicted value of price
to be $243.28 in the cell K6 containing the formula “<B13+B14*]6”.

Since the formulas (1.9.3) and (1.9.4) contain Y-, (x; — X)?, it is more convenient to have it
computed separately. Individual terms (x; — X)? are computed for i = 1, ... 10 from E2 through
E11 by the formula “=(B2-AVERAGE($B$2:$B$11))"2” contained in E2. Since this cell formula
is extended through E11, we need to freeze the values of the B column, thus there is
$B$2:$B$11 in the function AVERAGE in E2. The sum of the values in E column is the desired
quantity contained in K2. Since the desired value for which we are computing the confidence
intervals is Xx,,; = X7 = 1550, it is given in J6. K6 contains the predicted value J,,,
according to (1.3.2). The cells J9 and L9 compute the lower and upper confidence limits (1.8.3)
and the cells J10 and L10 compute the same for (1.8.4). Based on the results, Lisa concludes
that the house price with an area of 1550 square meters, will fall within the interval of $155
633 to $330 929 (by 95% confidence level) while the average house price of houses with 1550
square meters of area will fall within the interval of $213 914 to $272 649.
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1.10. Regression Table

Most of the computations in the preceding sections can be summarized by the regression table.
This section aims to analyze the table and make references to the computations above. The
regression table can be obtained in Excel using the Data tab, Data Analysis, Regression. The

resulting window is

A B c D | E T LT O (R
L X Y Regression ? X
2 1 1300 248 m—
np
3 2 2110 308 r—— “
Input Y Range: $CS1:5CS11 % | -
a| 3 1935 239 = E—
5 4 1700 302 Input X Range: $BS1:5B511 25
+ H
g 3 == o M [] constant is Zero Help
7 6 1455 223 " =
[[] confidence Level: |95 %
8 7 2250 385
9 8 2550 367 Output options
10 9 1765 232 O Output Range: %
11| 10 1600 245 (® New Worksheet Ply:
12 (O New Workbook
13 Residuals
14 [C] residuals [] Residual Plots
15 [[] standardized Residuals [] tine Fit Plots
16 Normal Probability
17 [[] Normal Probability Plots
18
19

Figure 1.10.1
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After filling the inputs as shown above, the resulting regression table is

A B C D E F G H |
1 'SUMMARY OUTPUT
3 Regression Statistics
4 MultipleR 0.86586572
5 RSquare 0.749723445
6 Adjusted R Square 0.718438876
7 'Standard Error 35.8115501
8 Observations 10
9
10 ANOVA
11 df 5s MS F Significance F
12 |Regression 1 30733.86304 30733.9 23.96464 0.001200778
13 Residual 10259.73696 1282.47
14 |Total 9 40993.6
15
16 Coefficients Standard Error tStat P-value Lower95% Upper95% Lower 95.0% Upper 95.0%
17 |Intercept 43.7130536 47.94890387 0.91166 0.388593 -66.85731701 154.28342 -66.857317 154.283424
18 X 0.128753568 0.026301094 4.89537 0.001201 0.068103136 0.189404 0.06810314  0.185404

Figure 1.10.2

The regression table is divided into three sub tables. The topmost table, Regression Statistics
provides general information about the regression. The middle table, ANOVA (Analysis of
Variance) contains the information about the measures of variability of the fitted regression
model. The last table contains information about the regression coefficients.

The table below summarizes the computations from the preceding sections

# Cell Description Equation
1. B5 R? (1.5.1)
2. B7 Se square root from (1.6.1)
3. C12 SSR (1.4.3)
4, C13 SSE (1.4.4)
5. Cl4 SST (1.4.2)
6. D12 MSR (1.7.5)
7. D13 MSE (1.7.6)
8. E12 F (1.7.4)
0. F12 p — value (significance F) (1.8.3)
10. B17 by (1.3.4)
11. B18 by (1.3.3)
12. C17 Sh, square root from (1.6.3)
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13. C18 Sh, square root from (1.6.2)
14. D18 t (1.7.2)
15. E18 p — value (1.8.1)
16. F17 LCL (By) (1.9.1)
17. G17 UCL (By) (1.9.1)
18. F18 LCL (B,) (1.9.2)
19. G18 UCL (B,) (1.9.2)

Table 1.10
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Chapter 2. Multiple Regression Analyses

2.1. Introduction

In Chapter 1, we developed a simple regression model as a vehicle for estimating dependent
variable Y (e.g. house price) in terms of independent variable X (e.g. house area). In this
chapter we generalize the topic to multiple regression model. In many situations, more than

one variable jointly affects the dependent variable.

e House price is determined by its area, location, availability of a parking space around
and possibly the age of a house.

¢ Demand for a certain product is determined by its price and brand name.

e Concentration of a certain drug in the bloodstream may depend on time passed after

injection and age of a patient.

Multiple regression analyzes helps predict the value of Y in terms of several independent
variables X. Most of the topics included in this chapter are the generalizations of what has
already been examined in Chapter 1. As an additional topic, we include the dummy variables

enabling us to incorporate qualitative variables into the model.

2.2. Multiple Regression

The population regression model is given by

Y =Bo+ B1X1 + BoXo+ -+ BiXy + € (2.2.1)

where Y is the dependent variable and X;-s for j = 1,..., k are the independent explanatory
variables. Similar to the simple regression model, 3, is the intercept coefficient, §;-s are the
slope coefficients for their corresponding X;-s and ¢ is a normal random variable with mean 0

and variance o°. Y and X;-s are random variables whose realizations are given by (2.2.2) below
Vi = Bo + Bix1i + BoXoi + o+ BrXpi + & (2.2.2)

which states that the observed value y; is a function of fixed values {x;;, X5;, ..., Xx; }. As seen

in Chapter 1, there are several standard assumptions about this model:

1) The terms x;; are (fixed numbers) the realizations of random variables X; and are
independent of the error terms ¢;.

2) Mathematical expectation of the random variable Y is a linear function of the
independent variables X;.

3) The error terms are normally distributed with mean 0 and variance 0%

Eeg =0, Ee? = o? fori=1,..,n
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4) The random terms ¢; are independent of one another (uncorrelated)
E[siej] =0 foralli+j
The corresponding sample estimated model for (2.2.2) is
¥i = bg + byx1; + byxy; + -+ brxy; + e (2.2.3)

where e; is the residual measuring the difference between the actually observed value of Y and
its estimated value. The coefficients b; are to be found using the least squares procedure. The
least squares estimates of the coefficients S, f1, ..., Bk in (2.2.1) are the values by, by, ..., by for
which the sum of squared errors defined as

n n n
SSE = Z e? =Z(yi —9)? = Z(yi — by — byxy; — byxy; — -+ — bXp;)?
i=1 i=1 i=1

is minimized. The resulting equation is
5}1' = bO + blxli + bzle- + -+ bkxkl- (224)

For simplicity we consider a model with only two predictor variables. Then (2.2.4) is reduced
to

Vi = bo + b1x1; + byxy; (2.2.5)
This can visually be illustrated as follows

y

Figure 2.2.1
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Unlike the Figure 1.3.2, where y was a function of a single variable whose graph was a line,
here y is a function of two variables whose graph is a surface in three dimensions. It can be
referred as the prediction surface. Note that depending on the slope coefficients b; and b,, the
surface is falling or rising with respect to the corresponding variable. In the Figure 2.2.1, b; <
0 and ¥ is a decreasing function of x;. On the other hand, b, > 0 making J an increasing
function of x,.

Minimization procedure for SSE (which is not examined in this book) yields the following
results for the coefficients

- Sy (rxly — rx1x2rx2y) (2.2.6)
! Sx1(1 - szlxz)

b = Sy (szy - Txlxzrxly) (227)
g SXz(]‘ - rXZl)CZ)
bO = }_/ - b1 fl - bz fz (228)

where

Sy is the sample standard deviation of Y,

Sy, is the sample standard deviation of X,

Sy, is the sample standard deviation of X,,

Ty,y is the sample correlation coefficient between X; and Y,
Ty,y is the sample correlation coefficient between X, and Y,
Ty,x, 18 the sample correlation coefficient between X; and X;,
y is the sample mean value of Y,

X, is the sample mean value of X,

X, is the sample mean value of X,

Example 2.2

In Example 1.5, the real estate agent, Lisa Miller found that the R? coefficient defined by (1.5.1)
was 75%. At that time, she had the simple regression model with an only predictor variable of
the house price —its area. She thought she could increase the explanatory power of the model
by addition more variables. She came up with the house age as an additional factor affecting
the house price. So, now she has observations on the triple — house area measured by square
meters and denoted by X, house age in years denoted by X, and the corresponding price — the
dependent variable Y measured in $1000s. (e.g. the 4" record in Figure 2.2.1 indicates that the
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8 year old house with 1700 square meters was sold for $302 000). In order to base her
predictions of house prices on a given pair of house area and age, she has to construct the
equation (2.2.5). She uses the equations (2.4.6), (2.4.7) and (2.4.8) to compute the values of
by, b, and b, respectively. The results are shown in the figure below. As expected, the b, =
0.0474 > 0 and b, = —9.5446 < 0. Lisa’s interpretation of b, is the same as it was before,
increasing the area of a house causes the house price to also increase. However, since the b,
coefficient is negative, Lisa concludes that older the house, less its price. The equation (2.2.5)

thus is
¥ =301.4223 4+ 0.0474x,; — 9.5446x,

At this point, Lisa is able to predict the house price for a given set of its area and age. However,
she accepts her colleague’s — Mary’s advice to measure various other characteristics of the
multiple regression model to have an idea about its prediction accuracy before she starts to use
the model.

A : C D 8 : G -
X, X, ¥

2 1 1300 15 248

3 2 2110 7 308

4 3 1935 17 239

5 4 1700 8 302

6 5 1050 18 169

7 6 1455 16 223

8 7 2250 5 385

9 8 2550 6 367

10 9 1765 14 232

11 10 1600 13 245

12

13| Sx 453.8664 <--"=STDEV.S(B2:B11)"

14| Sx, 4.909175 <--"=STDEV.S(C2:C11)"

15 | Sy 67.48959 <--"=STDEV.S(D2:D11)"

16| Txy 0.865866 <--"=CORREL(B2:811,D2:D11)"

17| Txay -0.94545 <--"=CORREL(C2:C11,D2:D11)"

18| Tayxs -0.78809 <--"=CORREL(B2:811,C2:C11)"

19

20| by 301.4223 <--"=AVERAGE(D2:D11)-B21*AVERAGE(B2:B11)-B22*AVERAGE(C2:C11)"

21| by 0.047394 <--"=B15*%(B16-B18*B17)/(B13*(1-B18*2))"

22| b -9.54456 <--"=B15%(B17-B18*B16)/(B14*(1-B18"2))"

Figure 2.2.1
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As shown in Figure 1.3.3, the house price positively depends on its area. Lisa can visualize the
negative dependence of the house price by its age by constructing a similar scatter plot for the
sample observations on X, and Y. The result is shown in the following figure below

A : C D : F G H J K L
Xy Xz Y

2 1 1300 15 248 House price with respect to its age

2 2110 7 308  aso
4 3 1935 17 239 | a00
5 4 1700 8 302) | 4o o
6 5 1050 18 169
7 6 1455 16 23| | il
8 7 2250 5 ags| | =0 g8
¢ 8 2550 6 367 200
10 9 1765 14 232 50 5
1 10 1600 13 245 100

S0
d 0 5 0 5
bu |
Figure 2.2.2

Note that the equation is deliberately NOT displayed using the “Display equation on chart”
checkbox. The reason for this is that it would bring up an equation expressing the dependence
of Y on X, alone. When modelling the dependence of Y on X; and X,, co-movements of X,
and X, also play a role as shown in (2.2.6) and (2.2.7), so b, and b, values are different from
what they would be if Y was regressed only on any of these variables. So, the value of b, is also
different from what Lisa had in Example 1.3.

2.3. Measures of Variability

The estimated model from the sample is given by (2.2.3) which is restated below

yi == bO + blxli + bzXzi + + bkxkl' + el' (231)
This can be rewritten as

yi=y+te
as long as the sample fitted regression equation is defined by (2.2.4) as

)’;i = bO + blxli + bzxzi + e+ bkxki (232)
The difference between the sample mean and the dependent variable can be expressed as

Vi= V=09 +e=0i—¥+ @i =)
Squaring both sides yields the following equality
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n n n n
D= =Y G T =IO =) Gi= 9P+ ) e
i=1 i=1 i=1 i=1

which is the sum of squares total decomposed into sum of squares regression and sum of squares

error. So the equality above can be rewritten as
SST = SSR + SSE

out of which

I I " (2.3.3)
SST =Y =97 = ) Q=92+ ) 3= 9’
i=1 i=1 i=1
n n (2.3.4)
SSE =) (=902 = ) e?
i=1 i=1
and
(2.3.5)

n
SSR =) (i =3V
i=1

The figure below shows the differences for a single observed point

yi\. 9=b0+b1x1+b2x2

Figure 2.3.1
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Example 2.3

Computing the values of (2.3.3), (2.3.4) and (2.3.5) is a right step towards determining whether
the addition of the independent variable X, improved the existing simple regression model or
not. Lisa knows that these values alone are not sufficient and she needs to proceed with
measuring the explanatory power of the 2 variable model. The computations of SSE, SSR and

SST are shown below.

A 3 C D £ F G -
1 Xy Xz Y y & —5)?
2 1 1300 15 248 219.8658 2697.165
3 2 2110 7 308 334.6111 3945.232
4 3 1935 17 239 230.8716 1675.131
5 4 1700 8 302 305.6351 1144.815
g 5 1050 18 169 179.3837 8540.777
7 5 1455 16 223 217.6672 2930.357
8 7 2250 5 385 360.3353  7838.5
9 8 2550 6 367 365.0089 8687.89
10 9 1765 14 232 251.4484 414.1887
11 10 1600 13 245 253.173 346.9661
12
13| Sx, 453.8664 SSE 2772.577 <--"=SUMXMY2(D2:D11,E2:E11)"
14| Sk, 4.909175 SSR 38221.02 <--"=SUM(F2:F11)"
15| Sy 67.48959 SST 40993.6 <--"=SUM(E13:E14)"
16| "x 0.865866
17| Txay -0.94545
18| Txyxs -0.78809
19
20| bg 301.4223
21| by 0.047394
22| by -9.54456
Figure 2.3.2

The column E contains the computations of J; for i=1,..,10 by the function
“=$B$20+$B$21*B2+$B$22*C2” in the cell E2. The SSE is then computed in the cell E13 by the
formula SUMXMY?2 which receives two vectors as arguments and makes the summation of the
differences squared. On the other hand, in order to compute the SSR value, at first, the squared
differences have to be computed for the mean observed value of Y and its estimated value ¥.
This computation is carried out in column F with the formula “=(E2-
AVERAGE($D$2:$D$11))"2” in the cell F2. The sum of these values is the SSR computed in
the cell E14. Finally, the sum of SSE and SSR is SST in E15 which could have alternatively
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been computed by taking the sum of the differences y; —y for i = 1,...,10. For the sake of
illustration, this computation is carried out in the following figure

A B C D £ F G H
1 Xy X2 Y y G -¥? i — )7
2 1 1300 15 248 219.8658 2697.165  566.44
3 2 2110 7 308 334.6111 3945.232 1310.44
4 3 1935 17 239 230.8716 1675.131 1075.84
5 4 1700 8 302 305.6351 1144.815 912.04
6 5 1050 18 169 179.3837 8540.777 10567.84
7 6 1455 16 223 217.6672 2930.357 2381.44
8 7 2250 5 385 360.3353  7838.5 12814.24
9 8 2550 6 367 365.0089 8687.89 9063.04
10 9 1765 14 232 251.4484 414.1887 1584.04
11 10 1600 13 245 253.173 346.9661 718.24
12
13| Sx, 453.8664 SSE 2772.577 <--"=SUMXMY2(D2:D11,E2:E11)"
14| Sk, 4.909175 SSR 38221.02 <--"=SUM(F2:F11)"
15| Sy 67.48959 SST 40993.6 <--"=SUM(E13:E14)"
16| Ty 0.865866 SST 40993.6 <--"=SUM(G2:G11)"
17| Txay -0.94545
18 ?3";-" 2 -0.78809
19
20| by 301.4223
21| by 0.047394
22| by -9.54456

Figure 2.3.3

The value in the cell E16 is the sum of the values in column G which are the squared
differences between the observed value of Y and the sample mean value computed by “=(D2-
AVERAGE($D$2:$D$11))"2” in the cell G2.

2.4. The Explanatory Power of a Multiple Regression Equation

In Section 1.5, the coefficient of determination of the fitted regression equation was defined
to be the proportion of total variability explained by the regression. So, it is defined as

SSR SSE (2.4.1)

RP=——=1-——"+
SST SST

It follows that

0<R*’<1



Decision Modelling 41

Closer this value to one, better the capability of the fitted regression equation to make accurate
predictions. In Section 1.5, we saw that the value of the coefficient of determination coincides
with the square of the value of the sample correlation coefficient between X and Y variables
(there was only a single independent variable X in Section 1.5). In particular, we had R* = 1;3,.
This equality implies that the explanatory power of the model, R?, is the same as the measure
of linear dependence between the dependent and independent variables. So, the goodness of
the model can be determined directly by the sample correlation coefficient between Y and X.
On the other hand, there are more than one independent variables in the multiple regression
model. So, how can all Xj,j = 1,..., k variables taken together explain the variation in the
values of Y? It turns out that the value of R? is related to the correlation between the sample
observations of Y and the estimated values of Y. In particular, we have

R? = rjff, (2.4.2)

where 7, 5 is the correlation between the observed values of Y and its estimated values by the
fitted regression equation (2.3.2). We can conclude that R? is still a correlation coefficient
squared just like in (1.5.2). However, unlike (1.5.2), here the correlation is taken between Y
and all the independent variables taken together and combined in §. It is reasonable to assign
Ty a separate name emphasizing its role. So, the coefficient of multiple correlation is defined

as
R =+R2 = Tys (2.4.3)

Now consider what happens when we add new predictor variables to the regression model. It
can be shown that addition of a new variable reduces SSE'. It can be thought of this way: every
new independent variable brings new information and reduces SSE. Therefore, the portion of
SSR in SST increases and so does R?. So, addition of a new variable evidently improves the
model by increasing R?. However, the new variable may not contribute much to the
explanatory power of the existing model and yet decrease the degrees of freedom of the model
(Regression Degrees of Freedom is n — k — 1 where k is the number of predictor variables).
More degrees of freedom mean more accuracy of analyzes based on the sample. So, the
dilemma whether or not to add a new variable depends on the measurement whether the new
variable brings enough explanatory power to offset the loss of one degree of freedom is
considered below.

In order to correct the fact that addition of a non-relevant explanatory variable will still
increase SSR and correspondingly R?, the adjusted R* denoted by R? is used. It is defined as

R2 o1 SSE/(n—k —1) (2.4.4)
B SST/(n—1)
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where n is the sample size and k is the number of explanatory variables. It can be seen in
(2.4.4) that R? penalizes the excessive use insignificant independent variables. R? < R? and
provides a better way of comparing multiple regression models with different number of

explanatory variables.

Example 2.4

In Example 2.3, it was unclear if addition of the new variable X,, which is the age of a house,
improved the model. The computations of the values of R?,R and R? are shown in the

following figure.
A

2 1
3 2
4 3
5 4
6 5
7 6
8 7
9 8
10 9
11 10
12
13| Sx,
14| Sx,
15| S
16| Ty
17| Tz
18 | Txyxs
19
20| by
21| by
22| b

The real estate agent now has meaningful numbers at her disposal. R? is 93%. However, in
order to account for the possible unnecessary loss of degrees of freedom, Lisa relies on the
adjusted coefficient of determination R? which is also quite high, 91%. The root from R? is

computed as 7,y whose value is 96.56% implying a very strong linear relation between the

1300
2110
1935
1700
1050
1455
2250
2550
1765
1600

453.8664
4.909175
67.48959
0.865866
-0.94545
-0.78809

301.4223
0.0473%94
-9.54456

15

17

18

16

14
13

predicted and observed values of Y.

248
308
239
302
169
223
385
367
232
245

SSE
SSR
SST

E

y
219.8658
334.6111
230.8716
305.6351
179.3837
217.6672
360.3353
365.0089
251.4484
253.173

2772.577 <--"=SUMXMY2(D2:D11,E2:E11)"
38221.02 <--"=SUM(F2:F11)"
40993.6 <--"=SUM(E13:E14)"

0.932366 <--"=E14/E15"
0.965591 <--"=CORREL(D2:D11,E2:E11)"
0.913041 <--"=1-(E13/(A11-2-1))/(E15/A10)"

Figure 2.4.1

F

-3

2697.165
3945.232
1675.131
1144.815
8540.777
2930.357
7838.5
8687.89
414.1887
346.9661
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Lisa can now conclude that addition of the new variable (X,, the age of a house) significantly
increased the explanatory power of the existing simple regression model (with only X, the
area of a house). Now she can make better predictions taking these two factors into account.

Lisa now wants to assess the variability for the individual components of the regression model.
In particular, she determines to estimate the standard error of the estimate and the standard

errors of the slope coefficients similarly to Section 1.6.

2.5. Standard Error of the Estimate and Variance Estimators of the Regression
Coefficients

In Section 1.6, the unbiased estimate of the error variance was defined by the (1.6.1) and the
root from this value was defined to be the standard error of the estimate. The geometric effects
of this value was also described. In the context of the multiple regression model (2.2.2), the

unbiased estimate of error variance is

ne? SSE (2.5.1)

2 —
n—-k—1 n—-k-—1

Se =

Note that the equation (1.6.1) is just the special case of (2.5.1) when k = 1. In order to measure
the effects of correlations between the independent variables, consider the generalized
versions of (1.6.2). The sample estimators of the regression coefficient variance are

2 Se (25.2)
bl (n - 1)53%1(1 - rlexz)

2 _ sé (2.5.3)
b2 = (n—Dsg,(1—12,,)

The square roots from each are the standard errors of the slope coefficients.

Example 2.5

The computations of (2.5.1), (2.5.2) and (2.5.3) are carried out below



44

T. Toronjadze (ed.)

I
[}

1300
2110
1935
1700
1050
1455
2250
2550
1765
1600

2 oo, o
W N Bw N e

[
o

w
<]
L]

A 453.8664
Sk, 4.909175
Sy 67.48959
EXY 0.865866
Txay -0.94545
% -0.78809

by 301.4223
by 0.047394
b, -9.54456

« O W 00~ O

[ S T S

2%}
v

15

17

18

16

14
13

SSE

SST

]

[

=T 0

248
308
239
302
169
223
385
367
232
245

E F G H |

) [0-7F s
219.8658 2697.165 Se
334.6111 3945.232 s3,
230.8716 1675.131 Sp,
305.6351 1144.815 S5,
179.3837 8540.777 Sh,

217.6672 2930.357
360.3353 7838.5
365.0089 8687.89
251.4484 414.1887

253.173 346.9661

2772.577 <--"=SUMXMY2(D2:D11,E2:E11)"
38221.02 <--"=SUM(F2:F11)"
40993.6 <--"=SUM(E13:E14)"

0.932366 <--"=E14/E15"

0.965591 <--"=CORREL(D2:D11,E2:E11)"
0.913041 <--"=1-(E13/(A11-2-1))/(E15/A10)"

Figure 2.5

J K L M
396.0825 <--"=E13/(A11-2-1)"
19.90182 <--"=SQRT(J1)"
" 0.000564 <--"=J1/(A10*B1372*(1-B182))"
0.023745 <--"=SQRT(J3)"
" 4.819255 <--"=J1/(A10*B14A2%(1-B182))"
2.19528 <--"=SQRT(J5)"

The cells J1, J3 and J5 contain computations based on the above-mentioned formulas. The

square roots from them are computed in the cells J2, J4 and J6.

2.6. Hypothesis for the Multiple Regression Slope Coefficients

When testing the existence of linear relationship between the dependent and independent

variables in simple regression model, we conducted the correlation analyses. This was

sufficient when dealing with a single explanatory variable. However, in the multiple

regression model, there are more than one explanatory independent variables. In Section 1.7,

we defined the hypothesis based on the Student’s ¢t test. Here, we generalize the hypothesis

(1.7.1).

For the regression model

Vi = Bo + B1x1; + Baxgi + -+ Prxy + &

consider the following hypothesis

Hy: B; = 0 (no linear relationship)
Hy:Bj #0  (linear relationship)

(2.6.1)

Here the existence of linear relationship between Y and X; is tested. This test can be regarded

as a filter to decide whether a given variable should be included in the regression model or



Decision Modelling 45

not. For the least squares coefficients, by, by, ..., by and the estimated standard deviations
Sbys Sby» -1 Sp, Of the least squares estimators, it can be shown that

L s/ N kL BT

Sbj Sbj

(2.6.2)

follows the Student’s t distribution with n — k — 1 degrees of freedom. So, the rejection rule
for the hypothesis is to

reject Hyift = ty_p_1q/2 OF <~y k_1,a/2 (2.6.3)

by the significance level a. Note that when k = 1, (2.6.3) reduces to its simple regression
version with the degrees of freedom n — 2.

Similarly, the hypothesis can be tested for any other value of §;,j = 1, ..., k. Taking the specific
value of the slope coefficient 7 and the significance level a, several possible formulations of
the hypothesis are summarized below

Case 1: To test the null hypothesis

Ho: Bj = B} or Hy: Bj < B
against the alternative

Hy: By > By
the decision rule is to

b, — B
reject Hy if t = ! L > th—k-1a
Sp ’

J

Case 2: To test the null hypothesis
Ho: Bj = B} or Hy: Bj = B}
against the alternative
Hy:B; < B
the decision rule is to

b; — B;
reject Hy if t = 2 < —tn—k-1a

Sb]
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Case 3: To test the null hypothesis

Hoiﬂj = :8;
against the alternative
Hl:ﬁj i ﬁ;
the decision rule is to
b, — B; b; — B}
reject Hy if t = ]s L > th—k—2,a/2 OT t = ]s L < —tn—k-1,a/2
b; b;

J J

The last one is the generalized version of (2.6.1). In all of the above cases (with one tailed test),
the critical value t,,_y_; o satisfies

P(tn—k—l > tn—k—l,a) =a
The for positive t, p-value is defined as

p —value = P(tp_p_1 > t) (2.6.4)

So, the rejection rules above which compares the t statistics to the critical value can be replaced
by comparison of the p-value to the significance level.

Hypothesis test for overall significance

Even though the hypothesis described above allow us to individually test the regression
coefficient values f8; against a given value ;. There is a way to test all of the coefficients against

zero. Consider again the multiple regression model

Vi = Bo + B1x1; + Baxgi + -+ Prxy; + &

and the hypothesis formulated as

Ho:py =Pz = =P =0 (2.6.5)
H;:at least one B; # 0

Accepting the null hypothesis would lead to a conclusion that none of the explanatory
variables is statistically significant and they should not to be included in the regression model.
Rather, the new set of the independent variables has to be proposed. On the other hand, if the
null hypothesis is rejected (as it usually happens), then we can conclude that this set of
variables contains at least one which is statistically significant for explaining the value of the
dependent variable. However, accepting the alternative hypothesis does not provide any
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information for identifying that variable beyond the fact that it is in a given set. In order to
identify the relevant variables, the individual tests need to be carried out using the Student’s ¢
test.

Before defining the rejection rule for (2.6.5), let us define mean square regression as

SSR
MSR = == (2.6.6)
and mean square for error as
SSE (2.6.7)
_ _ 2
MSE = ——] Sg
The ratio
MSR SSR/k B SSR/k (2.6.8)

F

T MSE SSE/(n—-k-1) 52

follows the F distribution with k degrees of freedom for the numerator and n —k — 1
degrees of freedom for the denominator. For a given significance level «, the decision rule
for (2.6.5) is to

T'eject HO lf F = Fk,n—k—l > Fk,n—k—l,a (269)

where Fy ,_j_1 o is the critical value for which

P(Fin-k-1> Fin-k-1a) = @ (2.6.10)

is defined to be the p-value for Fy ;,_x_1 o
Hypothesis test for a subset of regression explanatory variables

In addition to testing all of the coefficients against zero as in (2.6.5), there is a way to test the
hypothesis for a subset of variables. Consider the following multiple regression model

Yy =L+ f1x1+ Laxy + -+ Prxi + @121 + ayzy + -+ apz. + € (2.6.11)

There are k + 7 explanatory variables in (2.6.11) out of which the first k variables are assumed
to be affecting the dependent variable. The variables z;, ..., z, are to be tested by the following
hypothesis

Ho:al =0y = =0 = 0 (2612)
H;:at least one a;j # 0
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Accepting the null condition would imply that all of the a; coefficients are simultaneously
zero and none of the variables is affecting the dependent variable. On the other hand, rejecting
the null implies that there is at least one variable relevant in the estimation of the dependent
variable value and the t test described above needs to be conducted to identify such variables

individually. It can be shown that under the standard regression assumptions

[SSE(r) — SSE |/r (2.6.13)

sé

follows the F distribution with the numerator degrees of freedom r, and the denominator
degrees of freedom n —k —r — 1. SSE(r) is the sum of squared errors computed for the

regression involving only the first k variables x4, x;, ..., x; which is

Y =PBo+ Bix1s+ Baxz + o+ Brxy + €

This is referred to as restricted sum of squared errors. SSE is the sum of squared errors for the
entire model (2.6.11). Once having computed the value of F, the decision rule for the

hypothesis is to

reject Hyif F > Fr i k—r-14 (2.6.14)

Example 2.6.1

In Example 2.4, the real estate agent, Lisa Miller had to make a choice of the new variable to
be added to the existing regression model. Ultimately, she saw that addition of X, improved
the model by increasing the adjusted coefficient of determination significantly. Generally, in
order to decide on a given explanatory variable, the hypothesis (2.6.1) is tested. Lisa decided
to now test the following hypotheses by a = 0.1.

Ho: By =0 (2.6.15)
Hi: 5, #0

and
Hl: ﬁz * 0

The following figure illustrates the computations



Decision Modelling

49

1300
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1935
1700
1050
1455
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2550
1765
10 1600
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4.909175
67.48959
0.865866
x2y -0.94545
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20| b 301.4223
by 0.047394
-9.54456

[

(%)
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[¥)

15

17

18

16

14
13

SSE
SSR
SST

248
308
239
302
169
223
385
367
232
245

E

y
219.8658
334.6111
230.8716
305.6351
179.3837
217.6672
360.3353
365.0089
251.4484
253.173

2772.577 <--"=SUMXMY2(D2:D11,E2:E11)"
38221.02 <--"=SUM(F2:F11)"
40993.6 <--"=SUM(E13:E14)"

0.932366 <--"=E14/E15"
0.965591 <--"=CORREL(D2:D11,E2:E11)"
0.913041 <--"=1-(E13/(A11-2-1))/(E15/A10)"

F

o-y?
2697.165
3945.232
1675.131
1144.815
8540.777
2930.357
7838.5
8687.89
414.1887
346.9661

Figure 2.6.1

| J K L M

i 396.0825 <--"=£13/(A11-2-1)"

Se 19.90182 <--"=SQRT(J1)"

sﬂ'; " 0.000564 <--"=J1/(A10*B13/2%(1-B18~2))"
Sp, 0.023745 <--"=SQRT(J3)"

sﬁ: " 4.819255 <--"=]1/(A10*B14/2%(1-B18"2))"
Sp., 2.19528 <--"=SQRT(J5)"

t 1.995951 <--"=B21/14"
t; -4.34776 <--"=B22/J6"
t7.0.05 1.894579 <--"=T.INV.2T(0.1,7)"

Note that t;,__1,4/2 = t7,0.05 is computed in the cell J10. Since the hypothesis is tested based

on a = 0.1, the T.INV.2T function receives the significance level as an argument and makes
the division by 2. Lisa obtains the critical value to be t; 5 o5 = 1.8946. As long as the values of
both t; and ¢, statistics in absolute value are greater than the 1.8946, Lisa concludes that by
the given significance level of @ = 0.05, both variables, the house area X; and the house age
X, are linearly related to the house price Y and retains them in the model.

Example 2.6.2

For the sake of illustration, the following hypothesis could have been tested before the

hypothesis above

Ho:f1=p,=0
H;:at least one B; + 0

(2.6.17)
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A B c D E F G H | ) K L M
1 Xy X; Y y G-y 83 396.0825 <--"=E13/(A11-2-1)"

2 1 1300 15 248 219.8658 2697.165 Se 19.90182 <--"=SQRT(J1)"

3 2 2110 7 308 334.6111 3945.232 s3, | 0.000564 <--"=J1/(A10°B1342(1-B18"2))"
4 3 1935 17 239 230.8716 1675.131 Sp,  0.023745 <--"=SQRT(J3)"

5 a4 1700 8 302 305.6351 1144.815 ss, | 4.819255 <--"=J1/(A10°B1472%(1-B18"2))"
é 5 1050 18 169 179.3837 8540.777 Sp, 2.19528 <--"=SQRT(J5)"

7 6 1455 16 223 217.6672 2930.357

8 7 2250 5 385 360.3353  7838.5 ty 1.995951 <--"=B21/J4"

9 8 2550 6 367 365.0089 8687.89 tz -4.34776 <--"=B22/J6"

10| 9 1765 14 232 251.4484 414.1887 t7,0.05 1.894579 <--"=T.INV.2T(0.1,7)"

11 10 1600 13 245 253.173 346.9661

12|

13| Se, 453.8664 SSE 2772.577 <--"=SUMXMY2(D2:D11,E2:E11)"

14| S, 4.909175 SSR 38221.02 <--"=SUM(F2:F11)" MSR 19110.51 <--"=E14/2"

15| Sy 67.48959 SST 40993.6 <--"=SUM(E13:E14)" MSE 396.0825 <--"=J1"

16| ey 0.865866 F 48.24882 <--"=)13/114"

17| Tray -0.94545 R? 0.932366 <-"=E14/E15" Faz01  3.257442 <--"=F.INV(0.9,2,7)"

18| Toxs | -0.78809 R 0.965591 <--"=CORREL(D2:D11,E2:E11)"

19 R? 0.913041 <--"=1-(E13/(A11-2-1))/(E15/A10)"

20| by 301.4223

21| by 0.0473%4

2| by -9.54456

Figure 2.6.2
Since F = 48.25 > F, ; 1 = 3.26, the null hypothesis is rejected.

As an alternative, the p-values can be used to test the hypothesis.

Example 2.6.3
A B C D E F | & | H I | J [ L M

1 Xy X Y y |G- 5 396.0824666 <--"=E13/(A11-2-1)"

2 1 1300 15 248 219.8658 2697.165 Se 19.90182069 <--"=SQRT(J1)"

3 2 2110 7 308 334.6111 3945.232 sh, " 0.000563821 <--"=J1/(A10*81342%(1-B1842))"
4 3 1935 17 239 230.8716 1675.131 Sp, 0.023744906 <--"=SQRT(J3)"

5 4 1700 8 302 305.6351 1144.815 sﬁs " 4.819255488 <--"=)1/(A10*B1472*(1-B18"2))"
6 5 1050 18 169 179.3837 8540.777 Sy, 2.195280276 <--"=SQRT(JS)"

7 6 1455 16 223 217.6672 2930.357

8 7 2250 5 385 360.2353 78385 ty 1.995951109 <--"=B21/J4"

9 8 2550 6 367 365.0089 8687.89 t -4,34776177 <--"=B22/)6"

10 9 1765 14 232 251.4434 414.1887 t7005  1.894578605 <--"=T.INV.2T(0.1,7)"

11 10 1600 13 245 253.173 346.9661 p-value(t;) 0.086132093 <--"=T.DIST.2T(J8,7)"

12 p-value(tz) 0.003364031 <--"=T.DIST.2T(ABS(J9),7)"
13| Sx, 453,8664 SSE 2772.577 <--"=SUMXMY2(D2:D11,E2:E11)"

14| Sx, 4,909175 SSR 38221.02 <--"=SUM(F2:F11)" MSR 19110.51137 <--"=E14/2"

15| Sy 67.48959 SST 40993.6 <--"=SUM(E13:E14)" MSE 396.0824666 <--"=/1"

16| Tauy 0.865866 B 48.24881932 <--"=J13/)14"

17| Yy -0.94545 R? 0.932366 <--"=E14/E15" Faz704 3.257442051 <--"=F.INV(0.9,2,7)"

18| Tayxs -0.78809 R 0.965591 <--"=CORREL(D2:D11,E2:E11)" p-value (F) 8.04612E-05 <--"=F.DIST.RT(J16,2,7)"

19 R? 0.913041 <--"=1-(E13/(A11-2-1))/(E15/A10)"

20| bp 301.4223

21| by 0.047394

22| by -9.54456

Figure 2.6.3
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The p-values corresponding to t; and t, with the given degrees of freedom (which is 7) are
computed in the cells J11 and J12. As long as the hypothesis is tested by a = 0.1, the null
hypotheses (2.6.15) and (2.6.16) are rejected since the values in the cells J11 and J12 are

P(ty,_x—1>1t) =0.0861 <a=0.1
and
P(tp_k—1 > |tz]) =0.0034 < a =0.1

Note that since the density function of the Student’s t distribution is symmetric and ¢, < 0,
the absolute value of t, is used as an argument of the T.DIST.2T function.

Similarly, the p-value for F statistics, also known as Significance F, computed in the cell J18 is
less than the critical value

P(Fyn-r-1>F)=0<a=0.1 (2.6.18)

and the hypothesis (2.6.17) is rejected.

Example 2.6.4

Suppose the real estate agent in the previous examples, Lisa Miller is considering to have three
explanatory variables for the dependent variable house price - X; being the area measured in
square meters, X, as the house age and X3 as the number of bedrooms. Thus, the regression
model is

Yy = Bo + B1x1 + B2x; + B3x3

She does not doubt that the house area affects the house price. So she does not need to test any
hypothesis for X;. She only wants to know if any of the rest of the variables affects the price.
The regression model above can be rewritten as

Y = Bo+ Bix1 + a2z, + azz3
So, she attempts to test the following hypothesis
Hy:a, =a3=0
H;:at least one a; # 0

The following figure illustrates the sample observations on three independent variables
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A B C D E
1 X, X, Xs Y
2 1 1300 15 - 248
3 2 2110 7 6 308
4 3 1935 17 3 239
5 = 1700 8 3 302
6 S5 1050 18 2 169
7 6 1455 16 3 223
8 7 2250 7 385
9 8 2550 6 6 367
10 9 1765 14 3 232
1 10 1600 13 2 245

Figure 2.6.4

In order to compute the F statistics from (2.6.13), Lisa has to split the regression model into

two parts, the estimated regression equation for the first one is
Y =bo+ bix;
for which she computes SSE (), and the second equation is
¥ = bo + byx; + byx, + b3xs

for which she computes SSE. In order to follow the procedure of the hypothesis, we take a
shortcut in computing these values. The following figure illustrates construction of the
regression table only for X; using the Data tab in Excel, Data Analysis, Regression option.

A B C D E F G H | J K L
X X X Y — -
L x 2 2 Regression ? X
2 1 1300 15 4 248
3 2 2110 7 6 3os|] ['"P _
F Input Y Range: SES1:SES11 5 |
4 3 1935 17 3 239 Cancel
- 4 1700 8 3 302 Input X Range: $BS$1:5B511 :’,@j!
6 5 1050 18 2 169 Help
. : H
; = s 36 - — %L&bes [] constant is Zero
fi I 95
8 5 2250 5 5 385 Confidence Leve %
9 8 2550 6 6 367 | Output options
10 9 1765 14 3 232 | (@ Qutput Range: sHs1| % |
LL 10 1600 13 2 245 | O New Worksheet Ply:
12 O New Workbook
13 Residuals
14 [[] Residuals [[] Residual Plots
15 [[] standardized Residuals [ Line Fit Plots
16 Normal Probability
17 [[] Normal Probability Plots
18

Figure 2.6.5
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The resulting output table is
H | | _ J K L M N (o} P L]
SUMMARY OUTPUT
Regression Statistics
Multiple R 0.865866
R Square 0.749723
Adjusted R Square  0.718439
Standard Error 35.81155
Observations 10
ANOVA
df ss MS F Significance F
Regression 1 30733.86304 30733.86 23.96464 0.001200778
Residual 8  10259.73696 1282.467
Total 9 40993.6

Coefficient:Standard Error

t Stat

P-value

Lower 95% Upper 95%ower 95.09pper 95.0%

43.71305  47.94890387
0.128754  0.026301094

Intercept Do
by

0.911659 0.388593
4.895369 0.001201

-66.85731701 154.2834 -66.8573 154.2834
0.068103136 0.189404 0.068103 0.185404

Figure 2.6.6

From which we only need the highlighted SSE (7). Similarly, constructing the regression table

for X, X5, X5 as follows

A B a D £
1 | I X X2 | Xs Y
2 1 1300 15 4

3 2 2110 7 -

4 3 1935 17 3

5 4 1700 8 3

: 5 1050 18 2

7 6 1455 16 3

8 7 2250 5 7

9 8 2550 6 6

10 ] 1765 14 3

11 10 1600 13 2

12

13

14

15

16

17

18

248
308
239
302
169
223
385
367
232
245

F _ G H | J K L
Regression ? X
Input ok ]
Input ¥ Range: SES1:SEST1 % | -
= Cancel
Input X Range: $CS1:5DS11 =5
el
M Labels [] constant is Zero Help
[:I Confidence Level: 95 %
Qutput options
T =)
(® Qutput Range: | sHs20| 2.9

(O New Worksheet Ply:
(O New Workbook

Residuals
[[] Residuals

[] standardized Residuals

MNormal Probability
[[] Normal Probability Plots

[[] Residual Piots
[] Line Fit Plots

Figure 2.6.7
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results in the following output

SUMMARY OUTPUT
Regression Statistics
Multiple R 0.973168
R Square 0.947056
Adjusted R Square  0.920584
Standard Error 15.01919
Observations 10
ANOVA
df Ss MS F Significance F
Regression 3 38823.22224 12941.07 35.77554 0.000318128
Residual 6 2170.377764 361.7296
Total 9 40993.6

Coefficient: Standard Error tStat  P-value  Lower 95% Upper 95%ower 95.07pper 95.0%

Intercept by 271.0952  66.40503699 4.08245 0.006484 108.6079456 433.5825 108.6079 433.5825

by 0.035209  0.024578322 1.43254 0.201964 -0.024931552 0.09535 -0.02493 0.09535

b, -7.94291  2.437658925 -3.25842 0.017283 -13.90764679 -1.97817 -13.9076 -1.97817

bs 8.423564  6.528564697 1.290263 0.24445 -7.551258563 24.39839 -7.55126 24.39839
Figure 2.6.8

The highlighted numbers are sZ and SSE. Computation of F from (2.6.13) and the critical value

Frn—k-r—1.a = F2,70.05 is shown below
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A L C D £
1 X, X, X3 Y

2 1 1300 15 4 248
3 2 2110 7 6 308
4 3 1935 17 3 239
5 4 1700 8 3 302
6 5 1050 18 2 169
7 6 1455 16 3 223
8 7 2250 5 7 385
9 8 2550 6 367
10 E 1765 14 3 232
11 10 1600 13 2 245
12

131(r 2

14 |SSE(r) 10259.74

15 | SSE 2170.378

16 | s2 361.7296

17 |F 11.1815

F700s 0.051671

—
o

Figure 2.6.9

According to the rejection rule (2.6.14), since F = 11.1815 > F, ;05 = 0.0517, the null
hypothesis is rejected. The conclusion Lisa can draw from here is that at least one of the
variables X,, X5 is affecting Y. For a detailed identification, Lisa should conduct the t-based

tests discussed above.

2.7. Confidence Intervals for the Regression Coefficients

For the multiple regression model, we defined by, by, ... by, to be the unbiased estimators for the
population coefficients f, Sy, ..., fx. If the standard regression assumptions hold, the

confidence interval for the f5; coefficient corresponding to 100(1 — a)% confidence level is
bj * tn—k—l,a/zsbj (2-7-1)
where t,_y_1,4/7 is the number for which
P(tn—k—l > tn—k—l,a/z) =a/2

and the random variable t,,_,_, follows the Student’s t distribution with n — k — 1 degrees

of freedom.
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Example 2.7

Once having computed the values of b; and b,, Lisa Miller gets more information about the
estimates of the corresponding population coefficients f; and f, by constructing the
confidence intervals (2.7.1) for each. This way, she estimates the minimum and maximum
values the given coefficients obtain by the confidence level 100(1 — a)%. The following
figure illustrates the computations

A B C D E F G H | J K L M
X X Y § -y s? 396.0824666 <--"=E13/(A11-2-1)"

2 1 1300 15 248 219.8658 2697.165 Se 19.90182069 <--"=SQRT(J1)"
3 2 2110 7 308 334.6111 3945.232 sp, ” 0.000563821 <--"=J1/(A10*B1372*(1-B18"2))"
4 3 1935 17 239 230.8716 1675.131 Sp, 0.023744906 <--"=SQRT(J3)"
5 4 1700 8 302 305.6351 1144.815 sg, " 4.819255488 <-"=11/(A10*B1442%(1-818~2))"
6 5 1050 18 169 179.3837 8540.777 Sb. 2.195280276 <--"=SQRT(J5)"
7 6 1455 16 223 217.6672 2930.357
8 7 2250 < 385 360.3353 7838.5 4y 1.995951109 <--"=B21/)4"
g 8 2550 6 367 365.0089 8687.89 & -4.34776177 <--"=B22/J6"
10 3 1765 14 232 251.4484 414.1887 t700s 1.894578605 <--"=T.INV.2T(0.1,7)"

10 1600 13 245 253.173 346.9661 p-value(t;) 0.086132093 <--"=T.DIST.2T{J8,7)"
12 p-value(t2) 0.003364031 <--"=T.DIST.2T(ABS(J9),7)"
13| Sx, 453.8664 SSE 2772.577 <--"=SUMXMY2(D2:D11,E2:E11)"
14| Sx, 4.909175 SSR 38221.02 <--"=SUM(F2:F11)" MSR 19110.51137 <--"=E14/2"
15| Sy 67.48959 S5T 40993.6 <--"=SUM(E13:E14)" MSE 396.0824666 <--"=J1"
16 "®y  0.865866 F 48.24881932 <--"=J13/J14"
17| Yooy -0.94545 R? 0.932366 <--"=E14/E15" Fa7.0.1 3.257442051 <--"=F.INV(0.9,2,7)"
18| Taoux -0.78809 R 0.965591 <--"=CORREL(D2:D11,E2:E11)" p-value (F) 8.04612E-05 <--"=F.DIST.RT(J16,2,7)"
19 4 0.913041 <--"=1-(E13/(A11-2-1))/(E15/A10)"
20| by 301.4223 LCL ucL
21| b 0.047394 -0.00875 B 0.103541
22| by -9.54456 -14.7356 B2 -4.35354

Figure 2.7.1

The cells D21 and D22 compute the lower confidence limits for 5, and [, coefficients and
the cells F21 and F22 compute the upper confidence limits respectively.

The formulas used are

D21: =B21-T.INV.2T(0.05,7)*J4
F21: =B21+T.INV.2T(0.05,7)*J4
D22: =B22-T.INV.2T(0.05,7)*J6

F22: =B22+T.INV.2T(0.05,7)*]6
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2.8. Regression Table

Computations from the preceding sections can be summarized by the regression table. That is
a multiple regression analogue of the table shown in Section 1.10. By applying the regression
package in Excel using the Data tab, Data Analysis, Regression option as

A B C D E F G H I J

i s i | I =N I J
1 : Xy X2 : Y Regression ? X
2 1: 1300 15: 248 Bou
3 I 110 71 —_

2: 211 i 0B Kipse ¥ Range $DS1:SDS11 |

5 4 1700 8f 302 | InputXRange: sestscst1l |l

I 1
6 si 1050 13: 169 ] Labels [C] constant is Zero Help
z 6 3455 16: £33 [] confidence Level: |95 %
8 7 2250 5! 385
9 81 2550 6! 367 | Output options

l [ =
10 9: 1765 14= 232 O Qutput Range: %

1

L) 100 __ 1600 ___ 1 131 245 (® New Worksheet Ply:
12 (O New Workbook
13 Residuals
14 [[] Residuals [[] residual Plots
15 [[] standardized Residuals (] Line Fit Plots
16 Normal Probability
17 [C] Normal Probability Plots
18
10

Figure 2.8.1

the summary table shown below is obtained
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A B C D E F G H
1 |SUMMARY OUTPUT
2
3 Regression Statistics
4 'MultipleR 0.965591
5 RSquare 0.932366
6 Adjusted R Square 0.913041
7 Standard Error 19.90182
8 Observations 10
9
10 ANOVA
1 df Ss MS F Significance F
12 Regression 2 38221.02273 19110.51 48.24882  8.04612E-05
13 Residual 7 2772.577266 396.0825
14 Total 9 40993.6
15
16 Coefficientstandard Erroi  t Stat ~ P-value  Lower 95% Upper 95%ower 95.09pper 95.0%
17 \Intercept by 301.4223 64.98823685 4.638106 0.002375 147.7495633 455.0951 147.7496 455.0951
18 b, 0.047354 0.023744506 1.995951 0.086132 -0.008754109 0.103541 -0.00875 0.103541
19 b, -9.54456 2.195280276 -4.34776 0.003364 -14.73556863 -4.35354 -14.7356 -4.35354

Figure 2.8.2

Almost all of the coefficients shown in Figure 2.8.2 have been computed in the preceding
sections. The following table summarizes the references of each number from Figure 2.8.2 to

the corresponding equations in the text.

# Cell Description Equation
1. B4 R (2.4.3)
2. B5 R? (2.4.1)
3. B6 R? (2.4.4)
4. B7 Se (2.5.1)
5. C12 SSR (2.3.5)
6. C13 SSE (2.3.4)
7. Cl4 SST (2.3.3)
8. D12 MSR (2.6.6)
9. D13 MSE (2.6.7)
10. E12 F (2.6.8)
11. F12 P(Fxpn-k-1>F) mentioned in (2.6.19)
12. B17 by (2.2.8)
13. B18 b, (2.2.6)
14. B19 b, (2.2.7)
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15. C18 Sp, square root from (2.5.2)
16. C19 Sp, square root from (2.5.3)
17. D18 tq (2.6.2)
18. D19 ty (2.6.2)
19. E18 P(ty_k—1>t1) (2.6.4)
20. E19 P(th_k—1> |t2]) (2.6.4)
21. F18 b1 — th_k-1,a/25b, (2.7.1)
22. G18 by + th_k—1,a/25p, (2.7.1)
23. F19 b, — tn_k—1,a/25b, (2.7.1)
24, G19 by + tn_k—1,a/25p, (2.7.1)
Table 2.8

2.9. Dummy Variables

Up until this point in the text, all independent variables considered were numerical in nature.
The real estate agent in the examples decided to predict the house price (measured in $1000s)
by two explanatory variables - X; being the house area measured in square meters, and X,
being the house age measured in years. What if she now wants to include another variable —
location of the house as an additional factor determining the price? Location is not a numerical

variable, but rather a categorical variable capturing a certain characteristic of a house.

Let us introduce a dummy variable as categorical independent variable obtaining only two
values: yes or no, on or off, red or black (white also works), male or female, etc. The values are
recorded as 0 (in case of a certain criteria not satisfied) or 1 (in case of a certain criteria
satisfied).

Consider a two-variable model

y = bO + b1x1 + bzxz (2,9,1)

where x; is a normal numerical variable and x, is dummy — it can either be 0 or 1. Let us

consider both cases separately. When x, = 0 we have (2.9.1) rewritten as

Yy =bo+bixy (2.9.2)
and when x, = 1 we have

5} = bo + b1x1 + b2 = (bo + bz) + b1x1 (2.9.3)
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X1
Figure 2.9.1

In any case, (2.9.1) is reduced to a (linear) function of a single variable x;. We see that the
slopes of these two equations are both b;. Thus, the lines corresponding to these equations are
going to be parallel. However, the intercept coefficients differ. b, is the intercept in the first
line and b, + b, is the slope of another. So, it can be concluded that adding a dummy variable
to the existing model only affects the intercept coefficient. In particular, it splits the model
into two separate equations — one predicting the value of Y in case of x, = 0 and another for
x, = 1. The goal is to compute the coefficients by, b; and b, in the least squares sense.

Multiple regression with more than one dummy variables

Every additional dummy variable splits the existing scenarios in two. So, if in case of one
dummy variable, there are two of them, that will result in four different scenarios for all
possible combinations of the dummy variable values. To make it clear, consider the multiple
regression model

Y = bo + byxy + byxy + bsxs (2.9.4)

where x; is a numerical variable while x, and x3; are dummies. Then, there will be four
versions of (2.9.4)

Case l: x, =0,x3 =0

Yy =bo+bixy (2.9.5)
Case2: x, =0,x3 =1

Y = (bo + b3) + bix; (2.9.6)
Case3:x, =1,x3=0

Y = (bo + by) + b1xy (2.9.7)
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Case4:x, = 1.x3=1

¥y = (bg + by + b3) + byxq (2.9.8)

Again, the slopes of these lines is the same b, and intercepts differ. The Figure 2.9.2 illustrates
a possible scenario.

d

W

by + by + b3
by + b,

by + b

Figure 2.9.2
Example 2.9.1

Consider again the example of the real estate agent, Lisa Miller. She needs to predict the house
price with 2000 square meters of area located in the city center and another house located
outside of the city center with 1850 square meters of area. Initially she had the house price Y
as a dependent variable with X; — house area measured in square meters as an explanatory
variable. She thinks that in addition to area, location is a significant determinant of the house
price in a given city. So, she decides to express house location as a dummy variable X, whose
realizations are either 1 if the house is located in the city center, or 0 if it is located elsewhere.
Thus, she is going to obtain the fitted regression equation (2.9.1) split into two separate
equations (2.9.2) and (2.9.3).

She collects the data of observations on Y, X; and X, as shown below
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A B C D

1 Xy X> Y

2 1 1300 1 248
3 2 2110 1 308
4 3 1935 0 239
5 - 1700 1 302
6 5 1050 0 169
7 6 1455 0 223
8 7 2250 1 385
9 8 2550 1 367
10 9 1765 0 232
11 10 1600 1 245

Figure 2.9.2

e.g. the 4 record indicates that a house with 1700 square meters located in the city center was
sold for $302 000 and the 5" record shows a house with 1050 square meters of area located
outside of the city center was sold for $169 000.

Lisa computes by, b; and b, according to formulas (2.2.8), (2.2.6) and (2.2.7)

A 5 e D E F G
1 Xy Xz Y Sx, 453.8664
2 1 1300 1 248 Sx, 0.516398
3 2 2110 1 308 Sy 67.48959
4 3 1935 0 239 T,y 0.865866
5 4 1700 1 302 Teay 0.714779
6 5 1050 0 169 Tay2a 0.417658
7 6 1455 0 223
8 7 2250 1 385 bo 57.23202
9 8 2550 1 367 by 0.102187
10 9 1765 0 232 by 55.90543
11 10 1600 1 245

Figure 2.9.3

The procedure used in Figure 2.9.3 above is examined in detail in Section 2.2. As a shortcut,
she could have alternatively gotten the same coefficients using the regression package of Excel
in the Data tab, Data Analysis, Regression option. The resulting output table would be
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| J K L M N 0 P Q
SUMMARY OUTPUT

Regression Statistics
Multiple R 0.949097
R Square 0.900785
Adjusted RSq 0.872437
Standard Erro 24.10453

Observations 10
ANOVA

df SS MS F gnificance F
Regression 2 36926.4 18463.2 31.77676 0.000308
Residual 7 4067.199 581.0284
Total 9 40993.6

Coefficientandard Err tStat  P-value lower 95%Upper 95%ower 95.02pper 95.0%
Intercept by 57.23202 32.53869 1.758892 0.122 -19.7097 134.1738 -19.7097 134.1738

by 0.102187 0.019484 5.244718 0.001193 0.056115 0.148259 0.056115 0.148259
b, 55.90543 17.12452 3.264643 0.013776 15.41238 956.39847 15.41238 96.39847
Figure 2.9.4

Note that addition of the house location as an additional (dummy) variable contributed to the
explanatory power of the regression and the existing R? rose from 75% to 90% and adjusted

coefficient of determination R? rose to 87%.

Having the values of by, b; and b, computed, Lisa constructs the fitted regression equation
(2.9.1) to be

$ = 57.2320 + 0.1022x, + 55.9054x,

By inserting the desired values of x; and x, in the above equation, Lisa can predict the
corresponding house price. The figure below shows the expected prices of houses Lisa needed

to compute.
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A 3 C D E F G
: X, X, Y S 453.8664
2 1 1300 1 248 Sx, 0.516398
3 2 2110 1 308 Sy 67.48959
4 3 1935 0 239 X 0.865866
5 4 1700 1 302 Teay 0.714779
6 5 1050 0 169 Ty 2 0.417658
7 6 1455 0 223
8 7 2250 1 385 bo 57.23202
9 8 2550 1 367 by 0.102187
10 9 1765 0 232 b, 55.90543
11 10 1600 1 245
12
13 A X2 y
14 2000 1 317.512
15 1850 0 246.2784

Figure 2.9.5

As illustrated above, the house with 2000 square meters of area located in the city center is

expected to be sold for $317 512 and the house with 1850 square meters of area located outside
of the city center is expected to be sold for $246 278.

Generally, Lisa can construct the prediction graphs (lines) corresponding to (2.9.2) and (2.9.3)

as functions of area only as illustrated below

A B
1 X,
2| 1 1300
3| 2 2110
4| 3 1935
5 4 1700
6 S 1050
7| 6 1455
8| 7 2250
9| 8 2550
10/ 9 1765
11| 10 1600
12
13| by 57.232
14| by 0.10219
15| b2 ss.9054

The cell

C
XZ

H O K OO0 O K

G2

D

Y

248
308
239
302
169
223
385
367
232
245

E

F
Xy
1000
1200
1400
1600
1800
2000
2200
2400
2600
2800

contains
“=$B$13+$B$14*F2+$B$15”.

G H J K L M N

F(x2=0) $(x2=1) _
159.4193  215.3247 House Prices
179.8567 235.7622 450.0000
200.2942 256.1996 400.0000
220.7316  276.6371 350.0000
241.1691 297.0745 300.0000
261.6065 317.5120 250.0000
282.0440 337.9494 200.0000
3024814  358.3869 1500000
322.9189 378.8243 100.0000
343.3563  399.2618 0000

0.0000

1000 1200 1400 1600 1BOO 2000 2200 2400 2500 28O0
Suburb Center
Figure 2.9.6

the formula “=$B$13+$B$14*F2” and the «cell H2
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Example 2.9.2

Suppose Lisa Miller wants to predict the prices of two houses. The first with 1880 square meters
of area located in the city center with the available parking space and another with 2150 square

meters of a house located outside of the city center without an available parking space.

She considers adding another dummy variable to the existing model in the previous Example
2.9.1. The new variable X3 equals 1 if there is an available parking space around a house and 0

otherwise. She collects the sample data of 10 records shown below

A B c D E

X X ;22 Y
2 1 1300 1 0 248
3 2 2110 1 1 308
B 3 1935 0 0 239
5 - 1700 1 | 302
6 5 1050 0 0 169
7 6 1455 0 0 223
8 7 2250 1 1 385
9 8 2550 1 1 367
10 o 1765 0 0 232
1 10 1600 1 0 245

Figure 2.9.7

e.g. the 4" record now indicates that a house with 1700 square meters of area, located in the
city center with an available parking space was sold for $302 000 and the 5% record indicates
that a house with 1050 square meters of area located outside of the city center without an
available parking space was sold for $169 000. The fitted equation whose coefficients Lisa has
to compute is (2.9.4). She proceeds with the regression package described above
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4 A B C D E F { G | H | J K [
10 i_ X Xz X3 E Y Regression ? X
2| 1 1300 1 o 248 o
] —
3 | 2: 2110 - 1: 308 Input ¥ Range: SES1:SES11 %
4| 3; 1935 0 0} 239 — Cancel
=1 &l s 3 1! 302 | InputXRange: $851:5D511| 3
I
6| 5 1050 0 ol 19| A Labeis [] Constant is Zero Help
7 6 1455 0 o 223 [] confidence Level: |95 %
8| 7 2250 1 1! 385
9 8 2550 1 1 367 | Output options -
0 91 1765 0 of  232| @ OQutputRange: SHS1 |
1| 10, w00l 1 _____of 245 | (O New Worksheet Ply:
12| () New Workbook
13 | Residuals
14 [ Residuals [] Residual Plots
15| [[] standardized Residuals [ tine Fit Piots
16 Normal Probability
17| [C] Normal Probability Plots
18 |
Figure 2.9.8
which yields the regression tables
H I J K L M N 0] P
SUMMARY OQUTPUT
Regression Statistics
Multiple R 0.963814
R Square 0.928937
Adjusted R Squ 0.893405
Standard Error  22.03455
Observations 10
ANOVA
df S8 MS F gnificance F
Regression 3 38080.47 12693.49 26.14403 0.000764
Residual 6 2913.13 485.5216
Total 9 40993.6
Coefficientaandard Err  t Stat  P-value Lower 95%Upper 95%ower 95.02pper 95.0%
Intercept bp 94.22299 38.2151 2.465596 0.048748 0.714012 187.732 0.714012 187.732
by 0.078341 0.023589 3.321088 0.015983 0.020621 0.136062 0.020621 0.136062
b, 38.68206 19.23137 2.011404 0.090977 -8.37541 85.73953 -8.37541 85.73953
bs 38.96521 25.2735 1.541742 0.174074 -22.8768 100.8072 -22.8768 100.8072

Figure 2.9.9
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With these coefficients at hand, (2.9.4) becomes
¥ =94.2230 + 0.0783x; + 38.6801x, + 38.9652x,

Next, she computes the expected price of houses of her interest. The results are shown below

A B C D E F G H | J
X, X> X3 Y Xy Xz X3 y
2 1 1300 1 0 248 2150 1 1 340.3041
3 2 2110 1 1 308 1880 0 0 241.5047
- 3 1935 0 0 239
B - 1700 1 1 302
6 5 1050 0 0 169
7 6 1455 0 0 223
8 7 2250 1 1 385
9 8 2550 1 1 367
0 9 1765 0 0 232
10 1600 1 0 245

13 Intercept by 94.223

14 by 0.07834
15 b, 38.6821
16 by 38.9652

Figure 2.9.10

In particular, with x; = 1880,x, = 1,x3 = 1, she obtains ¥y = $34030, and for x; =
2150,x, = 0,x3 =0, y = $241 505.

The value in ]2 is computed by the formula “=$B$13+$B$14*G2+$B$15*H2+$B$16*12” and the
value in J3 by “=$B$13+$B$14*G3+$B$15*H3+$B$16*13”.

Remark: Note that the p-value for the 5 coefficient is 0.1741 > a = 0.1. So, based on the
significance level of 10%, X3 does not affect the house price and needs not be included in the
regression model. We are ignoring this fact for the current example.

In addition, Lisa can specify equations (2.9.5), (2.9.6), (2.9.7) and (2.9.8) for four different
scenarios.
y =94.223 4+ 0.0783x, (2.9.5)

$ = 133.188 + 0.0783x, (2.9.6))

$ = 132.905 + 0.0783x, (2.9.7)
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$ = 171.87 + 0.0783x,

(2.9.8)

In the following figure, different scenarios are listed below. e.g. the scenario 2 implies a house

located outside of the city center with an available parking space and the scenario 4 implies a

house located in the city center located in the city center. The columns H to K carry out the

computations of the equations (2.9.5)-(2.9.8). For the listed values of x; in the L column, the

formula in the cell H2 extended throughout the array is

W -

= WO 0 ~ O Wwn

b | b |k | b
W N = O

[
(=]

Intercept bg

“~$B$13+$B$14"$L.2+$B$15"M$14+$B$16"M$15”.

1300
2110
1935
1700
1050
1455
2250
2550
1765
1600

W N E WwN =
- - - -

94.223
0.07834
38.6821
38.9652

QO = = OO O K O

248
308
239
302
169
223
385
367
232
245

Figure 2.9.10

X
1000
1200
1400
1600
1800

2200

2600
2800

X2
X3

H
y(1)
172.5643
188.2326
203.9009
219.5691
235.2374
250.9057
266.5739
282.2422
297.9105
313.5788

o o l=

Finally, the Figure 2.9.2 can be drawn in terms of these numbers as

L
X1

M
y(1)

N 0

y@)  33)

P
y(4)

1000
1200
1400
1600
1800
2000
2200
2400
2600
2800

172.5643
188.2326
203.9009
219.5691
235.2374
250.9057
266.5739
282.2422
297.9105
313.5788

211.5295 211.2464
227.1978 226.9147
242.8661 242.5829
258.5343 258.2512
274.2026 273.9195
289.8709 289.5877
305.5392 305.256
321.2074 320.9243
336.8757 336.5925
352.544 352.2608

250.2116
265.8799
281.5481
297.2164
312.8847
328.5529
344.2212
359.8895
375.5578

391.226

X2
X3

o ol

= olN
o = W

= A

Q

450
400
350
300
250
200
150
100

50

1000 1200 1400

R

I

e X1 =) x 2=0

Figure 2.9.11

S

e X 1 =) X 2=1

T

|

¥(2)
211.5295
227.1978
242.8661
258.5343
274.2026
289.8709
305.5392
321.2074
336.8757

352.544

= olN

House Price

1600 1800 2000 2200

x1=1 x2=0

J

y(3)
211.2464
226.9147
242.5829
258.2512
273.9195
289.5877

305.256
320.9243
336.5925
352.2608

(=R

V

2400 2600

X1=]1x2=

K

y(4)
250.2116
265.8799
281.5481
297.2164
312.8847
328.5529
344.2212
359.8835
375.5578

391.226

e

W

2800

1
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Note that there are 4 separate lines on the graph. The reason why only three appear is that the
differences between the predicted house values for the scenarios 2 and 3 are very small making
the distance between the corresponding lines invisible.

We can conclude that Lisa Miller has four equations at her disposal. Depending on the desired
scenario, she can make predictions using the corresponding equation.
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Chapter 3. Nonlinear Regression

3.1. Quadratic Regression

The simple regression model examined in Chapter 1 was a linear model implying linear
relationship between the dependent and independent variables. However, in many applied
problems, the dependence may not be linear. There are various types of dependences out of

which we only investigate a quadratic model.

In Figure 1.3.3, the scatter plot of X and Y was illustrated. Since the scattered points are
clustered around the straight line, it is expected that the relationship between these variables

will be linear. This fact is shown in Figure 2.10.1 below

Figure 3.1.1

Note that the linear pattern is preserved for large and small values of X. Therefore, the residuals
(differences between points on the line and the observed points for given values of X) is not
showing any unusual change as we move through the extreme values of X on either side. When
detecting the linear pattern of this kind, one would follow the procedures described in Chapter

1 to build a simple regression model. What if the scatter plot looks as follows?

¥ oo
o @
® 9
® 9
... ....
oo 0°®

Figure 3.1.2
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It is obvious that the scatter plot does not follow a linear pattern. Fitting a straight line into
the points would be unreasonable. It would introduce higher residuals at the extreme values
of X as the line seems to be diverging from the observed points. The following figure illustrates
this effect

Figure 3.1.3

In an ideal case, there must be a more flexible fitting curve capable of following the observed
pattern. The quadratic regression aims to capture the pattern following the shape of parabola.
Figure 3.1.4 shows the fitting curve corresponding to the quadratic equation

Figure 3.1.4

The quadratic regression model may be considered when scatter plot takes one of the following
shapes
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Y Y
X X
p1>0 py >0
ﬁZ >0 ﬂz <0
Figure 3.1.5
Y Y
X X
p1 <0 f; <0
P2 <0 B2 >0
Figure 3.1.6

Recall that the simple linear regression model was defined as

which was estimated by

y = bO + blx (3.1.2)

The quadratic regression model extends the simple linear regression model (3.1.1) by adding

the quadratic component 3,X? as follows

Y =080+ BX+PX*+¢ (3.1.3)



Decision Modelling 73

Note that there is still an only explanatory variable X. The second term f3,X? involves the same
variable and introduces concavity to the model. Corresponding fitting quadratic equation is

¥ = by + byx + byx? (3.1.4)

Before computing the coefficients by, b, and b,, the importance of quadratic term S,X? has to
be measured. This is done by the following hypothesis

HO: ﬂz ] O (315)
Hl: ﬁz 0

Accepting the null hypothesis suggests that the quadratic term improves the model while
rejecting it implies the opposite. It can be shown that under general conditions,

_b—p (3.1.6)
==

t

2

follows a Student’s t distribution with n — 3 degrees of freedom. (n — 3 comes fromn — k — 1
where k is the number of explanatory coefficients - ; and 8, in quadratic model). So, the
rejection rule for the hypothesis (3.1.5) is to

b, — B, (3.1.7)
S

reject Hy if |t| = > |tn—3,a/2|

b
where t,,_3 , is the number for which
P(|tp—3| > |tn—3,a\2|) =a

and the corresponding p-value is

p —value = P(|t,_3| > |t]) (3.1.8)

It is useful to ultimately based the decision of whether the model (3.1.2) must be extended by
the quadratic component in (3.1.3) by comparing the coefficients of determination R? from
the linear model and the adjusted coefficient of determination R? from the quadratic model.
The following example illustrates the comparison

Example 3.1

Tom Davis produces and exports wine. There are different regulations in each importing
country. According to the regulations, the wine purity must be at a predetermined minimum
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level in order to be allowed for selling on the market. Here is the list of purity levels for each

importing country

Country Purity of Wine in %
A 83
B 95
C 86
D 80
E 99
F 93
G 85
Table 3.1.1

As we can see, Tom is only allowed to export wines if its purity is at least 80%. Some countries
have quite tough requirements. For example, the country E will only allow a wine with at least
99% purity. Tom uses a unique technology and method for wine production. So he needs a
model to estimate (or predict) the wine purity based on time. He has observed 15 production
outputs and recorded the purity level as a dependent variable Y and time in weeks it takes to
get to this level as an independent explanatory variable X. The figure below shows the sample

observations and the scatter diagram

A B C D E F G - I J K
X Y

2 1 1 2 Wine Purity
3 2 3 A |
4 3 4 6
5 4 5 8 100 °
é 5 6 12 ®
7 6 7 15 | 8 ”
8 7 8 19 | o
G 8 9 23 °
10 9 11 33| | 40 o
1 10 13 a4 °
2 11 15 58 20 . ® -
13| 12 16 65 e e ® "
14| 13 17 75 o -

0 5 10 15 20 25
5/ 14 19 91
16| 15 20 99

Figure 3.1.7

e.g. the 10" record indicates that wine having had been filtered for 13 weeks reached 44% of

purity. Tom has two options to predict the wine purity. He can either use the linear simple
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regression model (3.1.2) or the quadratic model (3.1.4). Even though the scatter diagram
indicates a clear non-linear pattern and Tom is planning to use the quadratic model, linear
regression is also expected to be a suitable model predicting the wine purity with a reasonably
high precision. So, Tom starts with what he expects to be a better model — quadratic regression.

First, he computes the coefficient estimates for 3, 51 and £, from (3.1.3), which are by, b, and
b,. This is done by the scatter plot diagram directly by selecting the polynomial model of
order 2.

4 TRENDLINE OPTIONS
Exponential
Linear
Logarithmic
® Polynomial Order |2

Power

Moving
Average

Figure 3.1.8

Selecting “Display Equation on chart” checkbox on the same window yields the quadratic

regression equation shown in Figure 3.1.9 below. The values of the coefficients are copied in
the cells B18-B20.
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A B C D E : G H
1 X Y
2 1 1 2 _ )
3 2 3 4 ¥=02269¢+04077x+09526 Wine Purity
4 3 4 6 120
5 4 5 8
i 5 6 12| | 100 »
7 6 7 15| o
8 7 8 19
9 8 9 23 e .
1 9 11 33
1| 10 13 as 4 P
12| n 15 58 W
13| 12 16 65 2 S
14| 13 17 Bl  Leuwee?
15 14 19 91 0 5 10 15 20 25
16| 15 20 99
17
18 bo 0.9526
19| by 0.4077
20| b 0.2269

Figure 3.1.9

The equation (3.1.4) with these values is

Tom can now estimate Y values by y for all observations on X. The following figure illustrates

relevant computations.

$ = 0.9526 + 0.4077x + 0.9526x>
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A B C
1 X Y
2 1 1 2
3 2 3 4
4 3 a4 6
5 a4 5 8
5 5 5 12
7 6 7 15
8 7 8 19
9 8 9 23
10 9 11 33
11| 10 13 a4
12| 11 15 58
13| 12 16 65
14| 13 17 75
15| 14 19 91
16| 15 20 99
17
18| bo 0.9526
19| by 0.4077
20| b, 0.2269
21
22

D

b
1.5872
4.2178
6.2138
8.6636

11.5672
14.9246
18.7358
23.0008
32.8922
44.5988
58.1206
65.5622
73.4576
90.6098
99.8666

E F G H
G- 9)?
1249.349
1070.306
943.6897
799.1778
643.4407
484.3843
331.1502
194.1155
16.33076
58.75938
448.9003
819.612
1334.022
2881.163
3960.596

15235 <--"=SUM(E2:E16)"
4949764 <--"=SUMXMY2(C2:C16,D2:D16)"
15239.95 <--"=E18+E19"
0.999675 <--"=E18/E20"
0.999621 <--"=1-(E19/A13)/(E20/A15)"

Figure 3.1.10

In order to compute the sum of squares errors and sum of squares regression, y values are first
computed in the column D by “=$B$18+$B$19*B2+$B$20"B2”2” in D2 and the squared
differences between the mean value of observed Y and the estimated value of Y are computed
in the column E by “=(AVERAGE($C$2:$C$16)-D2)"2”. Note that the R? coefficient and
adjusted coefficient of determination R? are close to 100% meaning that the model is

extremely accurate. So, Tom can almost precisely predict the wine purity for a given filtering

time.

Tom builds the simple linear regression model for comparison. The figure below shows the

coefficients computed
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A £ C D £ F G H [ J K
1 X Y
. 4 1 2 |y=532891%-17.368 Wine Purity
3 2 3 a
4 3 4 =il s
5 4 5 8 100 @
6 5 6 12 .
7 6 7 15| | %0 ot
8 7 8 8| e
9 8 9 23 o
10 9 11 33 40 .
1 10 13 a4 P il
20 R
12| 1n 15 58 e
13| 12 16 65| | o |o o.0°
14 13 17 75 0 5 10 15 20 25
15| 14 19 91 | 20
16| 15 20 59
17
18 bp  -17.3681
19 by 5.289096
Figure 3.1.11

The equation (3.1.2) is

$ = —17.3681 + 5.2891x

Similar computations as in quadratic model above yields the coefficient of determination equal

to 0.9563.
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-1.50077
3.788329
9.077425
14.36652
19.65562
24.94471
30.23381
40.812
51.3902
61.96839
67.25749
72.54658
83.12478
88.41387

SSR
SSE
SST
Rz

E F G H

G-9?

2402.205

1477.18
1098.591
775.9516

509.261
298.5194

143.727

44.8836
15.04409
209.0009
626.7541
919.5543
1268.304
2133.649
2650.246

14572.87 <--"=SUM(E2:E16)"

666.0621 <--"=SUMXMY2(C2:C16,D2:D16)"
15238.93 <--"=E18+E19"

0.956292 <--"=E18/E20"

Figure 3.1.12

As long as R? = 0.9563, it can be concluded that the linear model also provides a reasonably

good explanatory power. However, comparing R? from the quadratic model with R? of the

linear model suggests that the quadratic model outperforms its linear counterpart.

As a conclusion, Tom can now predict times it takes to be able to export wine to various

countries according to Table 3.1.1 with a great accuracy.
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Chapter 4. Time Series Models

4.1. Introduction

All models examined so far in the text involved dependent random variable explained by one
or more predictor (independent) variables. A random variable is a variable that can obtain
various values at a given point in time. Sample observations on these variables helped construct

the models later used for making predictions.

The objective of this chapter is to construct forecasting models based on time series. 7ime

Series is a data recorded over successive increments of time.

Before selecting the prediction model for a given time series data, it is important to identify
the data pattern. There can typically be four basic data pattern for the time series: horizontal,

trend, cyclical and seasonal.

When time series data fluctuates around a constant level, horizontal or stationary pattern

exists.

On the other hand, when the values of time series data grow or decline over a certain time
period, the trend pattern emerges. Trend is a long term component of a time series data that

that represents growth or decline over an extended period of time.

A wavelike fluctuations of observations from a time series data around the trend indicates a

cyclical pattern.

Fluctuations repeating themselves year after year imply seasonal pattern. These fluctuations
are influence by seasonal factors and usually have the effects of the same magnitude every

year.

In this chapter, we uncover these patterns and examine different models used for predictions.

4.2. Autocorrelation Coefficient

When a measurements of variables are made over time, observations in different time periods
frequently tend to be related. This relation is measured by autocorrelation coefficient that is
formally defined as a correlation between a variable and itself lagged by one or more time
periods. The following equation provides a formula for computing the lag k autocorrelation
coefficient between observations y; and y;_j

_ Yt=k+1Ve = DOk — ¥)

- (4.2.1)
; Y1 (Ve — ¥)?

,k=0,12..
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where

7% 1is the autocorrelation coefficient for a lag of k periods

y is the mean value of the series

V¢ is the observation in time period t

Y¢—k is the observation at time period t — k which is k time periods earlier than t

The autocorrelation coefficient obtains values within the interval of [-1,1] and implies a certain
degree of similarity between the original data and its lagged version. r, = 1 implies a perfect
positive correlation between the original data and the lagged data while r, = —1 implies a
perfect negative correlation. The following example illustrates the computation.

Example

Leo Johnson, a small book store owner is interested to know how much autocorrelation
between the book sales data and its lagged version is. He computes the autocorrelation

coefficients for k = 1 as shown in the following figure

A B C D E F G H
Timet  Month Ve Ye-r Ve =F)0e-1—5) ¥ -7
2 1 January 125 370.5625
3 2 February 133 125 216.5625 126.5625
< 3 March 128 133 182.8125 264.0625
5 4 April 136 128 134.0625 68.0625
6 5 May 147 136 -22.6875  7.5625
7 6 June 143 147 -3.4375 1.5625
8 7 July 138 143 7.8125 39.0625
9 8 August 151 138 -42.1875 45.5625
10 9 September 149 151 32.0625 22.5625
11 10 October 161 149 79.5625 280.5625
12 11 November 157 161 213.5625 162.5625
13 12 December 163 157 239.0625 351.5625
15 n 0.5960 <--"=SUM(E3:E13)/SUM(F2:F13)"
Figure 4.2.1

r; = 0.6 implies that the correlation between the originally observed data and its lagged data
by one period of time are correlated by 60%. So, the successive book sales are somewhat
correlated with each other. The values in E column are computed by the formula “=(C3-
AVERAGE($C$2:$C$13))*(D3-AVERAGE($C$2:$C$13))” in E3. Note that computations start
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from the E3 because of the index of summation in the numerator of (4.2.1). The formula in F2
is “=(C2-AVERAGE($C$2:$C$13))"2”. The denominator in (4.2.1) is the summation of all
squared differences between the observed values of Y and its mean value. Ultimately, the sum
of the values in column E represents the numerator of (4.2.1) and the sum of all values in

column F represents the denominator. Their quotient is r; computed in E15.

If on the other hand Leo computed the autocorrelation coefficient for lag k = 2, it would be

computed as follows

A 3 C D 3 B G H
1 | Timet Month Ve Ve-2 (Ve =¥)0e—2—¥) Ye—J
2 1 January 125 370.5625
3 2 February 133 126.5625
4 3 March 128 125 312.8125 264.0625
5 4 April 136 133 92.8125 68.0625
6 5 May 147 128 -44.6875  7.5625
7 6 June 143 136 10.3125  1.5625
8 7 July 138 147 -17.1875 39.0625
9 8 August 151 143 -8.4375 45.5625
10 9 September 149 138 -29.6875 22.5625
11 10 October 161 151 113.0625 280.5625
12 11 November 157 149 60.5625 162.5625
13 12 December 163 161 314.0625 351.5625
15 r 0.4618 <--"=SUM(E4:E13)/SUM(F2:F13)"
Figure 4.2.2

The column D in the above figure contains the lagged data by 2 periods of time. Computations
of the numerator of (4.2.1) starts from E4 now with the formula “=(C4-
AVERAGE($C$2:$C$13))*(D4-AVERAGE($C$2:$C$13))” . F column remains the same and
the r, coefficient in E15 turns out to be 0.4618. So, Leo can conclude that the original data is
correlated to its lagged version of one period of time than two. In the context of the book sales,
this means that successive book sales are more correlated with each other than the book sales

of every second month.
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4 3. Error Estimators

Residual in the text above was defined as

e =Y — Vt
the difference between the actually observed value y; and its forecast value J;. In the
following sections we examine various forecasting models to obtain y;. Regardless of the

model, we can measure the forecast error in different ways. Measures of forecast errors help

evaluate a forecasting technique and estimate parameters of a given model by its optimization.

One method for measuring a forecasting technique is the mean absolute deviation (MAD). It
measures forecasting accuracy by averaging absolute deviations of the forecast value from the

actually observed value

1w A (4.3.1)
MAD = _Z |ye — Vel
n
t=1

MAD is a useful measure on its own. It is expressed in the same units as the original time series

and provides an average deviation regardless of direction.
Another way of evaluating a forecasting technique is mean squared error (MSE).

1 . (4.3.2)
MSE == (v = 90
t=1

It first sums the squared deviations from time series and its forecast and then divides by
number of observations. Computation of the MSE frequently leads to extremely large values.
Its usefulness becomes clear when we need to provide an analytical derivations of parameters
of a given forecasting method. In particular, since MSE is the average of squared deviations, it
is an easily differentiable function and hence, minimization problem given the model y with

some parameters are analytically solvable.

The square root from MSE is the root mean squared error (RMSE) which brings MSE back to
units of original time series and thus, the magnitude of RMSE is interpreted in the same units.

T (4.3.3)
RMSE = |~ (v, = 9)?
t=1
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Sometimes it is useful to compute the forecasting errors in percentages. Mean absolute
percentage error (MAPE) measures the average percentage deviations in absolute values. So its

value shows the magnitude of deviation in percentage and is always positive

n

1 -5 (4.3.4)

MAPE=—§:|yt Vel
nt 4 |yel

Note that the value of MAPE is not defined if y, = 0 forany of t = 1, ..., n.

In order to determine whether a forecasting method is biased, showing consistently low or
high values, mean percentage error (MPE) is used. It is computed by taking the deviation
between observed and forecast value in each period and dividing by actual value for that

n
1 PN
MPEz—Zyt Yt
nt=1 Yt

If the resulting value is close to zero, then the model is unbiased. Large positive value implies

period.

(4.3.5)

that the model is consistently underestimating and large negative value implies that the model

is consistently overestimating.

Choice of the forecast error estimators depends on the situations described above. But the
decision whether the selected forecasting model is producing reasonably accurate results
depends on the judgment of values of selected error estimators. The following sections examine

forecasting methods.

4.4, Simple Moving Average

Moving average method is based on smoothing historical data. The objective is to use past
observations to forecast future values of the time series. The moving average method is
appropriate to be used for forecasting when factors affecting the time series have stabilized and
the environment in which the time series data is generated is generally unchanging. A simple
moving average (SMA) method averages all past observations in the time series to obtain the

forecast value for the next period

1< (4.4.1)
Vi1 = ?Z Vi
=1

where t is the number of observations and y; is the actual observed value of the time series

corresponding to time period i.
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Whenever a new observation becomes available, the forecast for the next period is

1 & (4.4.2)
YVi+2 = t+_12 Yi

So, the forecast value evolves with the appearance of new observation in then time series data.
The equation (4.4.1) uses all past observations starting from the first data point to the last
available one. However, when dealing with many time series simultaneously, the data storage
may be an issue. The following formula provides a way to compute the forecast value based
only on the most recent observed data point and the most recent forecast

o _ tVe41 + Verr (4.4.3)
Ve+2 —r1

As long as we keep storing the most recent data, there is no longer a need to average all past

observations to forecast the next period value.

Example 4.4

ABC Transit Petroleum Inc. imports and distributes gasoline. John Meyer, a sales manager is
responsible for weekly reporting and forecasting the gasoline sales (measured in thousands of
liters). In order to forecast the sales for the next week, he observes sales data from the past

month
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A B C D P
t Ve
2 1 177
3 2 201
4 3 305
5 4 155
6 5 381
7 6 137
8 7 122
9 8 365
10 E 122
11 10 395
2 11 152
13 12 394
14 13 456
15 14 163
16 15 221
17 16 394
18
19| %5  251.7857 <--"=AVERAGE(B2:B15)"
200 s -30.7857 <--"=B16-B19"
21| Ve 249.7333 <--"=(A15*B19+B16)/A16"
22

€16 144.2667 <--"=B17-B21"
Figure 4.4.1

Based on the observations on 14 weeks in the past, John forecasts the sales for the next (15%)
month to be y;5 = 251 786 liters. When the new data y;5 = 221 000 becomes available at
the end of 15™ week, John computes the residual between the observed and forecasted value
to be -30 786 liters. So the company sold 30 786 less litters than predicted. In order to forecast
the sales for the 16" week, John proceeds with (4.4.2) using only the most recent observed
value y;5 and the most recent forecast value ;5. The forecast value for 16" week is 249 733
which is 144 267 litters less than 394 000 that was actually sold.
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A B C D E F G H ) K
1 t Ve Pe €

2 1 177 SMA

3 2 200 a7 = .

4 3 305 189 | <o

5 4 155 227.6667 -72.6667 00

6 5 3817 2095 1715 350

7 6 1377 2438 -106.8 300

8 7 122" 226 -104 250

9 8 365  211.1429 153.8571 %

10 9 122: 230.375 -108.375 132

1 10 3952183333 176.6667 o,

12 11 152 236 8

13 12 334'228.3536 165.6364 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
14 13 455:242.1567 213.8333 e a——
15 14 163 258.6154 -95.6154

16 15 221" 251.7857 -30.7857

17 16 394" 249.7333 144.2667

18

19| $is | 251.7857 <-"=AVERAGE(B2:B15)"

20| es -30.7857 <--"=B16-B19"

21| 16 249.7333 <-"=(A15*B19+B16)/A16"

22| e 144.2667 <--"=B17-B21"

Computations of the forecast values for the simple moving average are illustrated in the Figure
4.4.2. Note that computations in the column C begin from the cell C3 which contains the
formula “<~AVERAGE($B$2:B2)”. The starting cell of the array in the argument of the
AVERAGE function is frozen. The results are the predicted values for the next time period.
e.g. the row corresponding to t = 5 implies that the company sold 381 000 litters of gasoline
in the 5% week while the forecast value for this time period would have been 209 500 litters

which was found by averaging the previous 4 observations. In column D, the residuals are

computed for each time period.

Figure 4.4.2
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4.5. Moving Average

Simple Moving Average computes the average value of all past observations. The assumption
here is that all the observed values have equal weight in computation of the forecast value.
What if the most recent observations are more relevant than all the available data points? The
term moving average (MA)is the generalized version of SMA which enables us to average the
only the most recent observations

(4.5.1)

t
o _YetYeat ot YVewen 1 Z ,
Ve+1 k k Vi

where k is the number of terms in the moving average. So, only the most recent consecutive
k data points are averaged in order to forecast the value of the next period.

Example 4.5

John Meyer from Example 4.4 forecasts the values of the time series for the time periods 15
and 16 based on (4.5.1) now using k = 4. The following figure illustrates the computations of
forecasts for the time periods from 5 to 16.

A B C D E F G H J K L
t Ve Ve e
2 1 177 MA (k=4)
3 2 201
' 3 305 e
= 450
5 a 155 =
6 5 3317 2095 1715 | 5
7 6 1377 2605| -1235 300 ks
8 7 1227 2aa5| -1225 @ 20
9 8 365 198.75| 16625 @200
10 9 1227 25125 -129.25 %O
1 10 395”7  186.5| 2085 22
2 1 152" 251 -99 ;
r
3 12 ad 135.5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
4 13 456" 26575 190.25
= r m—— Original MA
5 14 163" 349.25| -186.25
6 15 221”7 291.25| -70.25
7 16 394" 3085 855

Figure 4.5.1

The formula in the cell C6 is “<=AVERAGE(B2:B5)”. Note that the cell references in the
AVERAGE function are not frozen. The column D computes the residuals with a simple
formula subtracting J; from y; in each cell.
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John Meyer has two methods in his hands now — the simple moving average and moving
average. He can base his choice of which method to use on one of the error estimators from
section 4.3. He selects the model with smaller MSE. The following figure illustrates the
computation of MSE

A B C D E F G H | )
t Ve Ve e er MSE 21564.86 <--"=AVERAGE(E6:E17)"
2 1 177
3 2 201
4 3 305
5 4 155
6 5 381”7 2095 1715 29412.25
7 6 137 2605  -123.5 15252.25
8 7 122" 2445  -122.5 15006.25
9 8 365 198.75  166.25 27639.06
10 9 122" 251.25 -129.25 16705.56
1 10 395" 1865  208.5 43472.25
2 11 1527 251 -99 9801
3 12 394 2585  135.5 18360.25
4 13 456~ 265.75 190.25 36195.06
5 14 1637 349.25 -186.25 34689.06
r
6 15 2217 29125  -70.25 4935.063
7 16 394" 308.5 85.5 7310.25

Figure 4.5.2

The column E values are squares of corresponding values in the column D. According to (4.3.2),
the average of these values is the mean squared error computed in H1. Similar computation of
MSE for the simple moving average would yield MSE = 16 579.62.



90 T. Toronjadze (ed.)

A B C D E F G H | )
t Ye Ve e ef MSE 16579.62 <--"=AVERAGE(E3:E17)"
2 1 177
3 2 201 177 24 576
4 3 305 189 116 13456
5 4 155 227.6667 -72.6667 5280.444
6 5 3817 2095  171.5 29412.25
7 6 1377 2438  -106.8 11406.24
8 7 1227 226 -104 10816
9 8 365  211.1429 153.8571 23672.02
10 9 122" 230.375 -108.375 11745.14
1 10 395 218.3333 176.6667 31211.11
2 1 1527 236 -84 7056
3 12 394 228.3636 165.6364 27435.4
4 13 456  242.1667 213.8333 45724.69
5 14 163 258.6154 -95.6154 9142.302
r
6 15 221”7 251.7857 -30.7857 947.7602
7 16 394" 249.7333 144.2667 20812.87

Figure 4.5.3

Note that as long as the simple moving average computation includes more data, it has more
components in the computation of residuals (D2, D3) and thus, its MSE is expected to be
higher. However, increasing the number of observations offsets this effect and comparison by

MSE is gives reasonable result.

4.6. Double Moving Average

One way of forecasting time series with a linear trend is a double moving average (DMA)
method. It has a double smoothing effect of the original data. The predicted value by the DMA
method is based on two sets of average values. First, average is computed from k number of
the original data. Next this set is averaged once again. The resulting forecast value is a function
of both, the average from the first set and the average from the second set.

The procedure of building a DMA method is as follows. First, equation (4.5.1) is used to

compute the moving average of k order

(4.6.1)

t
Vet Yeat ot Yegar 1
= % Yi

M
t k

next, the following equation is used to compute the second moving average
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, :Mt+Mt—1+"'+Mt—k+1 _ (4.6.2)

t k

Considering the forecast is to be made p periods ahead, the ultimate equation used to make the

forecast is

where

and

Example 4.6

a, = My + (M — My) = 2M, — M;

bt:

yt+p =a;+ bp

2
T =1 M~ Mp)

(4.6.3)

(4.6.4)

(4.6.5)

Ben Fischer is a local video game store manager. His job is to prepare financial reports and

make forecasts for weekly rentals. He has observations for 15 weeks and plans to forecast the
video game rentals for the next week (16™). The following figure illustrates the original time
series and two moving averages, first by (4.6.1) and second by (4.6.2).

A C D
t . Ve M, M:
2 1
3 2 436
4 3 aa3” 4395
5 a 243" 4423333
‘ 5 4517 447.3333 443.0556
7 6 447" 448.6667 446.1111
8 7 468" 455.3333 450.4444
9 8 468" 461 455
10 9 476" 470.6667 462.3333
1 10 483" 475.6667 469.1111
2 1 477" 478.6667 475
3 12 483" 482.6667 479
14 13 435" 483.3333 481.5556
r
15 14 436 486.3333 484.1111
16 15 503" 491.3333 487
17 16

520

500

460

440

420

400

F G

H J K L

DMA

1 2 3 4 5 6

— Original

Figure 4.6.1

r 8 9 10 1 12 13 14 15

— First MA Second MA
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The column B contains the original time series. The values of M, in the C column is computed
according to (4.6.1) by “=AVERAGE(B2:B4)” in the cell C4. Similarly, the M; values in the D
column correspond to equation (4.6.2) by “<AVERAGE(C4:C6)” in D6.

In order to make forecast for 16™ week, Ben needs to use (4.6.3)-(4.6.4).

A B C D E F G H
t Ve M, M, Q. b, Ve=a+bp(p=1) ef

2 1

3 2 436

4 3 aa3” 4395

5 4 aa8” 4423333

6 5 451’ 447.3333 443.0556 451.6111 4.277778

7 6 4477 448.6667 446.1111 451.2222 2.555556 455.8888889 79.01235

8 7 468" 455.3333 450.4444 460.2222 4.883889 453.7777778 202.2716

9 8 268" 461 455 467 6 465.1111111 8.345679

10 9 476~ 470.6667 462.3333 479 8.333333 473 9

1 10 483" 475.6667 469.1111 482.2222 6.555556 487.3333333 18.77778

2 1 477’ 478.6667 475 482.3333 3.666667 488.7777778 138.716

3 12 488" 482.6667 479 486.3333 3.666667 486 a4

4 13 485" 483.3333 481.5556 485.1111 1.777778 490 25

5 14 486 486.3333 484.1111 488.5556 2.222222 486.8888889 0.790123

6 15 503" 491.3333 487 495.6667 4.333333 490.7777778 149.3827

16 500

18

19

20 MSE 63.52962963 <--"=AVERAGE(H7:H16)"

Figure 4.6.2

In Figure 4.6.2, a, values are computed in column E by “=2*C6-D6” in E6. b, values are
computed in column F by “=C6-D6” in F6. The forecast values in column G are computed for
p = 1. Ben forecasts the rentals for the week 16 to be 500 units of video games. In the last
column, residual values squared are computed whose average is the MSE computed in G20.

4.7. Simple Exponential Smoothing

Simple Exponential Smoothingis a moving average, exponentially weighted for all previously
observed values. The objective of the model is to first estimate the current level and then use
this estimated level to forecast future values of the time series. The simple exponential
smoothing model is often appropriate for modelling data without predictable upward or
downward trend. The model is based on averaging past values of a given time series in an
exponentially decreasing order. The idea behind it is that the most recent observation receives
the largest weight @ (0 < @ < 1) and is assumed to be the most significant determinant of the
forecast. The next most recent observation receives less weight a(1 — a) which is less than a.
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The observation one time period older receives the weight a(1 — «)? which is even less and
so forth.

The forecast for time t + 1 is the weighted sum of the most recent observation y, and the
forecast for time t, which is ¥;. The most recent value y, is assigned a weight a and the weight
for the forecast value y; is (1 — «). So, the ultimate forecast equation is

Ver1 = aye + (1 — )P, (4.7.1)
which can be rewritten as

Veri=aye + (A=) =9 + a(ye — ¢) (4.7.2)

In this form, the forecast value for the next period of time is the predicted value for the
previous period plus the weighted residual. According to (4.7.2), y; turns out to be

Ve=aYe 1+ (1 —a)y_q

Substituting this equation in (4.7.2) yields

Vemi=aye+ (A —a)y=ay. + (1 —a)[ay,—1 + (1 — a)P_4] (4.7.3)

Jerr=aye+a(l— )y, + (1 — a)*P,_4

Continued substitution of ¥;,y;_1, V¢_z, ... results in
Verr = aye +a(l =)y + a(l— )’y + a(l — a)’yp_3 + - (4.7.4)

So the predicted value ;. is an exponentially smoothed value. Past observations become less
and less relevant as more weights are given to more recent values. The speed with which the
“relevance” of past observations in forecasting the next value decreases, depends on the weight
a. The value of a can be optimized by minimizing one of the error estimator from Section 4.3.

Example 4.7

A local cable TV provider was established in 2014. The number of additional subscriptions sold
is a time series data observed every quarter from 2015. The Figure 4.7.1 below shows the
quarterly observations for the number of additional subscribers from 2015 till 2020. In total
there are 21 observations in column C. Assuming a = 0.1 (which will later be optimized), the
forecast values are computed in column D according to (4.7.2). In D1 we have the same value
as in Cl. The reason for this is that by convention y; = J; is to be taken. All the rest of the
computations of P, values depend on the previously observed and forecast values based on
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(4.7.2). So, the cell D2 contains the formula “=$I$1*C2+(1-$I$1)*D2” extended throughout the
column below. The column E computes residuals for each period of time and the column F is

the squares of the values in E.

I=

Year

2 2015
3

5

6 2016
T

8

9

10 2017
12

13

14 2018
15

16

17

18 2019
19
21
22 2020

W 0o~ bW e

NN K e e e b e e e e
M E O WIR-NOWOUaE WNREO

520
370
240
390
590
450
310
470
650

370
580
720
610

650
730
680
510
720
860

520

505
478.5
469.65
481.685
478.5165
461.6649
462.4984
481.2485
487.1237
475.4113
485.8702
509.2832
519.3548
511.4194
525.2774
551.7497
564.5747
559.1172
575.2055
603.685

0

-150

-265
-88.5
120.35
-31.685
-168.517
8.33515
187.5016
58.75147
-117.124
104.5887
234.1298
100.7168
-79.3548
138.5806
264.7226
128.2503
-54.5747
160.8828
284.7945

E
43
0
22500
70225
7832.25
14484.12
1003.939
28397.81
69.47473
35156.86
3451.735
13717.96
10938.79
54816.77
10143.88
6297.191
19204.59
70078.04
16448.14
2978.339
25883.26
81107.9

1000
900
800
700
600
500
400
300
200
100

a 0.1
MSE 23558.86

Exponential

-
(%]
w
o
w
o
~
o

9 10 11 12 13 14 15 16 17 18 19 20 21

—o—0riginal =g~ Forecast

Figure 4.7.1

The very last value in the cell D23, which is J,, = 604 new subscribers, is the forecast for the

time period 22 (second quarter of 2020), meaning that the number of subscribers will increase
by 458 at t = 22. Note that @ = 0.1 was assumed above. This alpha produces MSE = 23 558.86
in I2 by averaging the values in the column F. What if there can be found another value of «

which produces lower MSE? This would mean that the exponential model with lower a better

fits the observed sample of time series. The best possible value of a can be found by minimizing

MSE. For this purpose, Solver package from Data tab is used as illustrated below
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Sort & Filter
Set Objective: 5152 ;’;
H | -
s 0.1 To: O Max ® Min O value Of: 0
MSE 23558.86
By Changing Variable Cells:
r
SIS1 £
Subject to the Constraints:
SIS1 <=1
SIS1>=0 Add
Change
-
/
Delete
Reset All
Load/Save !
(4] Make Unconstrained Variables Non-Negative .
Select a Solving Method: GRG Nonlinear V Options

Solving Method

Select the GRG Nonlinear engine for Solver Problems that are smooth nonlinear. Select the LP
Simplex engine for linear Solver Problems, and select the Evolutionary engine for Solver f
problems that are non-smooth.

Help | Solve Close

Figure 4.7.2

In the Set Objective text box, the cell containing the value to be optimized (minimized) is
selected. That is 12 with the MSE value. In By Changing Variable Cells text box, the variable
to be optimized is selected. For our model this is a in the cell I1. Next, since we have 0 < a <
1, the value of «a is subject to constraints
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H | J K L M N
« {___ol
MSE 23558.86
Change Constraint X
Cell Reference: Constraint:
sis| Bl <= |v||1 s
oK Add Cancel
Figure 4.7.3
H I J K L M N
« [___oy
MSE 23558.86
Change Constraint X
Cell Reference: Constraint:
sis1| £l >= v||o =4
oK Add Cancel
Figure 4.7.4

Once both constraints are in place, clicking the Solve button in Figure 4.7.2 yields different
value of a minimizing MSE and therefore, changing the forecast values in column D. The
result is shown in Figure 4.7.5. The forecast value for the time period 22 now is 708 which is
obtained by a = 0.3036 producing the minimum MSE of 20 604.15. No other value of a can
produce lower MSE.
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A A B & D E F G H | J K L M N
1 Year t ¥ A e e? a 0.303589

2 2015 1 520 520 0 0 MSE 20604.15

3 2 370 520 -150 22500

4 3 240 474.4617 -234.462 54972.27 ) .

5 4 390 403.2817 -13.2817 176.4037 Exponential

6 2016 5 590 399.2495 190.7505 36385.74 1000

7 6 450 457.1593 -7.15925 51.25491 500

8 7 310 454.9858 -144.986 21020.88 f;i

9 8 470 410.9697 59.03029 3484.575

10 2017 9 650 428.8306 221.1094 48889.34

1 10 540 496.017 43.983 1934.505 a0

12 11 370 509.3697 -139.37 19423.93 300

13 12 580 467.0586 112.9414 12755.75 200

14 2018 13 720 501.3464 218.6536 47809.4 100

& A o B L W ’ 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21
16 15 440 580.5607 -140.561 19757.32

17 16 650 537.8881 112.1119 12569.09 —o—0riginal =g Forecast
18 2019 17 790 571.924 218.076 47557.14

19 18 680 638.1295 41.87054 1753.142

20 19 510 650.8409 -140.841 19836.16

2 20 720 608.0832 111.9168 12525.38

22 2020 21 860 642.0599 217.9401 47497.9

23 2 708.2241

Figure 4.7.5

As a conclusion, the cable TV provider expects the number of subscribers to increase by 610
in the second quarter of 2020.

4.8. Holt’s Exponential Smoothing Model Adjusted for Trend

In simple exponential smoothing, the level around which the time series fluctuates, is assumed
to be changing over time and an estimate of the current level is required. What if in addition
to estimating the current level, the observed time series data is trending? Then the necessity
of anticipating upward or downward movements arises. So, in addition to the level estimate,
the linear function estimating the trend is required. Holt’s exponential smoothing method
adjusted for trend intends to estimate linear trend in a time series and can be used to generate

more accurate results for trending data.

The trend estimation on the other hand, requires estimate of the current slope and the current
level. Holt’s model weights the level and slope by different weights for each. These estimates
themselves evolve over time as new observations show up and can be regarded as time series.

In particular, the level estimate in the Holt’s model for a given period of time is

Ly=ay;+ (1 —a)(Li—1 + Te-q) (4.8.1)
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where L;_, and T;_; are the previous estimates of the level and trend respectively and « is the
smoothing constant satisfying 0 < a < 1. The trend estimate is given by

Ty =B(Le— L) + (1= )T,y (4.8.2)
where 0 < f < 1. Ultimately, the forecast for p periods ahead into the future is given by

Virp = L + 0T} (4.8.3)

So the forecast value at time t, p periods into the future is the linear function of p given the
level and trend estimates fixed for the time period t.

Example 4.8

The objective of this example is to solve the forecasting problem given in Example 4.7 using
the Holt’s method. Figure 4.8 shows the computations with @ = 0.3 and f = 1. The forecasts
are computed for p = 1. Current levels at each time t are computed by the formula
“=$K$1*C3+(1-$K$1)*(D2+E2)” in D2 and the trends are computed by “=$K$2*(D3-D2)+(1-
$K$2)*E2” in E2. Note that by convention L, = y; and T; = 0 are taken. The forecast for the
second quarter of 2020 is additional 749. MSE, which is the average of the sum of squared
residuals is computed in the cell K4 and equals 20 437.63.
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A B D £ F G 3 J K
1 |Year Ve L, T, Ve e etz a 0.3
2 2015 1 520 520 0 520 0 0 B 0.1
3 | 2 370 475 -4.5 520 -150 22500 P 1
4 3 240 40135 -11.415 470.5  -230.5 53130.25 MSE 20437.63
5 | 4 390 389.9545 -11.4131 389.935 0.065 0.004225
6 2016 5 590 441.979 -5.06929 378.5415 211.4586 44714.72
7 | 6 450 440.8368 -4.67659 436.9097 13.09028 171.3554
8 7 310 398.3122 -8.46139 436.1602 -126.16 15916.4
9 | 8 470 413.8955 -6.05691 389.8508 80.14924 6423.9
10 2017 9 650 480.487 1.207927 407.8386 242.1614 58642.13
1 10 540 499.1865 2.957078 481.695 58.30504 3399.478
12 11 370 462.5005 -1.00723 502.1436 -132.144 17461.92
13 12 580 497.0453 2.547974 461.4933 118.5067 14043.85
14| 2018 13 720 565.7153 9.160176 499.5933 220.4067 48579.13
15 14 610 585.4128 10.21391 574.8755 35.12455 1233.734
16 | 15 440 548.9387 5.545111 595.6267 -155.627 24219.68
17 16 650 583.1387 8.410596 554.4838 95.51618 9123.34
18 | 2019 17 790 651.0845 14.36412 591.5493 198.4507 39382.69
19 18 680 669.814 14.80066 665.4486 14.55139 211.743
20 19 510 632.2303 9.562219 684.6147 -174.615 30490.29
21| 20 720 665.2547 11.90844 641.7925 78.2075 6116.413
22 2020 21 860 732.0142 17.39355 677.1632 182.8368 33429.3
23 749.4078
Figure 4.8.1

On the other hand we should optimize the model by minimizing MSE as shown in the

following figure.
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0.3
0.1
1

miw ol

I 20437.63!

MS

Solver Parameters

Set Objective: sﬂ |5
To: O Max @® Min O value Of: 0

By Changing Variable Cells:

| SKS1:5KS2 @

Subject to the Constraints:

SKS1:5KS2 <=1

SKS1:5KS2 > = 0 | add |
Change |
Delete |
ResetAll
Load/Save ‘

E Make Unconstrained Variables Non-Negative
Select a Solving Method: ' GRG Nonlinear El Options |

Solving Method

Select the GRG Nonlinear engine for Solver Problems that are smooth nonlinear, Select the LP
Simplex engine for linear Solver Problems, and select the Evolutionary engine for Solver
problems that are non-smooth.

1 Help | [ Solve I Close
Figure 4.8.2
The constraints for the values of @ and 8 were added as follows
J K L M N 0 P Q R
a | 3!
= 03: Change Constraint X B
b Lol
p 1 Cell Reference: Constraint:
MSE 20437.63 — T==1 [ r :
sKs1:5Ks2 B[« B[
oK l Add - ‘ Cancel j

Figure 4.8.3
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J K L M N 0 P Q R

=1 03 Change Constraint X
ange Constrain

B1___oa| ™™

p 1

MSE 20437.63 Cell Reference: . - Constraint: .
SKs1:5Ks2] 5 ) S N 23
OK Add Cancel
Figure 4.8.4

Solving the MSE minimization problem in Figure 4.8.2 gives the following results

A B C D E F G H | ) K
1 |vear t Ye [ T, e e & a 0.22323
2 2015 1 520 520 0 520 0 0 B 0.227133
3 2 370 486.5155 -7.60545 520 1150 22500 p 1
4 3 240 4255781 -19.7189 478.91 -238.91 57077.99 MSE 20180.66
5 4 390 402.3189 -20.523 405.8592 -15.8592 251.5127

6 2016 5 590 428.2734 -9.96644 381.7959 208.2041 43348.95

7 6 450 425.3818 -8.35951 418.3069 31.69309 1004.452

8 7 310 393.1317 -13.7859 417.0223 -107.022 11453.76

9 8 470 399.5826 -9.18942 379.3458 90.6542 8218.185

10 2017 9 650 448.3453 3.973435 390.3931 259.6069 67395.72

1 10 540 471.8918 8.419142 452.3187 87.68131 7688.013

12 1 370 455.6862 2.826044 480.311 -110.311 12168.51

13 12 580 485.632 8.98584 458.5123 121.4877 14759.27

14 2018 13 720 54493 204134 494.6178 225.3822 50797.12

15 14 610 5753121 22.67762 565.3434 44.65665 1994.216

16 15 440 562.7216 14.66707 597.9897 -157.99 24960.74

17 16 650 593.5977 18.34868 577.3887 72.61132 5272.404

18 2019 17 790 651.6934 27.37654 611.9464 178.0536 31703.08

19 18 680 679.2775 27.4237 679.0699 0.930109 0.865103

20 19 510 662.7915 17.45035 706.7012 -196.701 38691.37

21 20 720 689.1171 19.46621 680.2419 39.7581 1580.706

22 2020 21 860 742.3841 27.14349 708.5833 151.4167 22927.01

23 769.5276

Figure 4.8.5

So we obtain a more accurate model with @ = 0.2232 and f# = 0.2271 producing minimum
possible MSE which is 20 180.66 which is smaller than MSE computed by ¢ = 0.3 and f =
0.1. Based on this formula, taking the trend into consideration, the expected value for the new
subscribers in the period 22 is 770. At this point, the local cable TV provider has a more
accurate forecast compared to the forecast made by the simple exponential smoothing method.
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Figure 4.8.6 shows the original time series data and the forecasts based on the optimized a and
B on the same chart:

A B C D = : G H | ) K L
1 |vear t e L, T, Ve e e’ a 0.22323
2 2015 1 520 520 0 520 0 0 B 0.227133
3 2 370 486.5155 -7.60545 520 -150 22500 p 1
4 3 240 4255781 -19.7189  478.91 -238.91 57077.99 MSE 20180.66
5 4 390 402.3189 -20.523 405.859? -15.8592 251.5127
6 2016 5 590 428.2734 -
Holt

7 6 450 425.3818 -
8 7 310 393.1317 - 1000
9 8 470 399.5826 - :ﬁ
10 2017 9 650 448.3453 3 _
11 10 540 471.8918 8 .,
12 1 370 455.6862 2 5qp
13 12 580 485.632 400
14 2018 13 720 544.93 300
15 14 610 575.3121 2 200
16 15 440 562.7216 1 u:g
7 16 650| 593.5977 1 1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22
18 2019 17 790 651.6934 2
19 18 680 679.2775 =—p=0riginal =—g==Forecast
20 19 510 662.7915 17.45U35 /Ub./ULZ -190./UL 38bYLl.37
21 20 720 689.1171 19.46621 680.2419 39.7581 1580.706
22 2020 21 860 742.3841 27.14349 708.5833 151.4167 22927.01
23 769.5276

Figure 4.8.6

4.9. Holt-Winters’ Exponential Smoothing Model Adjusted for Trend and Seasonal
Variation

In Holt’s model, the simple exponential smoothing method was extended by taking trend into
account. If we observe the data in Examples 4.8 and 4.7, we notice that the observations for
the first quarter each year are consistently higher than the observations of the third quarter.
So, the seasonal pattern emerges that needs to be addressed in order to obtain a better model,
taking one more component into consideration and therefore, producing more accurate
results. To address this problem, a seasonal index is added to the existing Holt’s model and we
obtain Holt-Winters’s Exponential Smoothing model estimating current level, trend and
seasonal index for each period of time as follows

The level estimate is given by

Y
Ly =g+ (1= Q)L + 1) #9.1)
-5
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where S,_; is the seasonality estimate defined by (4.9.3) below. The trend estimate is

Ty =B(Le—Le—g) + (1= B)Ti—4 (4.9.2)

and the seasonality estimate defined as

Se=y—+ {1 —y)Ss (4.9.3)

where y is the smoothing constant for the seasonality estimate satisfying 0 < y < 1. s in the
index of the seasonality coefficient is the constant, time periods in which the seasonality
pattern persists. Ultimately, the forecast for p periods into the future is

Vesp = (Lt + DT St—s4p (4.9.4)

Example 4.9

By adding the seasonality component to the model, the Example 4.8 is further extended. The
following figure demonstrates computations for the Hold-Winter’s method

A B C D E F G H i K L M N 0 P Q
1 Year t Ve L, T: 5 7. & ex: @ 0.4
2 2015 1 520 500 0 1 520 270400 B 0.1
3 2 370 500 0 1 370 136900 ¥ 0.3
4 3 240 500 0 1 240 57600 P 1
5 4 350 500 0 1 3%0 152100 MSE 54017.56
6 2016 5 550 536 3.6 1.030224 590 348100
7 6 450 50376  0.016 0.967985  539.6  -89.6 8028.16 Holt-Winters
8 7 310 4262656 -7.73504 0918174 503.776 -193.776 37549.14
g 8 470 439.1183 -5.67626 1.021098 418.5306 51.46944 2649.103 232
10 2017 g 650 512.4376 2.223288 1.101691 4465424 203.4576 4139501 .
1 10 540 531.3405 3.951254 0.982135 498.1839 4181613 1748589 ;g0
2 1 370 482.7246 -1.36547 0.872666 492.0418 -122.042 14894.2 g0
13 12 580 516.0219 2.100811 1.051964 491.5148 88.48518 7829.628 500
14 2018 13 720 57229 7.517538 1.148615 570.811 149,189 22257.34) 400
15 14 610 596.3229 9.169082 0.994375 569.449 40.55096 1644.381 0
16 15 440 564.9759 5.117473 0.844505 5283926 -88.3926 7813.248 :0
17 16 650 589.2129 7.029421 1067324 5997175 50.28251 2528331
12 2019 17 790 632.8594 10.69113 1.178521 684.8527 105.1473 11055.96 i % 54 E & 7F B e 19 3536 %
19 18 680 659.669 12.30298 1.005308 639.9305 40.06346 1605.562 o o
20 19 510 644.7449 9.580266 0.828457 567.4836 -57.4836 3304.359 RO -t
21 20 720 6624287 10.39062 1.0732 698.3772 21.62277 467.544
22 2020 2n 860 695.5828 12.66698 1.195877 792.9317 67.06833 4495.16
23 2 712.0095
Figure 4.9.1

The initializing values of the level, trend and seasonality are by convention taken as L, =
¥1,T; = 0and S; = 1. The index of the seasonality coefficient in (4.9.3) is s = 4 in this example

since we concluded that the seasonality pattern keeps repeating every quarter. So, the
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computations begin from t = 5. The column D computes the levels according to (4.9.1) by
“=$1L.$1*C6/F2+(1-$L$1)*(D5+E5)” in D6. The trend component values are computed in column
E according to (4.9.2) by “=$L$2*(D6-D5)+(1-$L$2)*E5”. The seasonality component is
computed in column F based on (4.9.3) by “=$L$3*C6/D6+(1-$L$3)*F2” in F6. The forecasts
taking all these three components into consideration are computed in the column G based on
(4.9.4) by “=(D6+E6*$L$4)*F3”. The highlighted value, 512 is the forecast value for 22" month.
The computations described above were based on @ = 0.4, = 0.1 and y = 0.3. The mean
squared error, computed in 14 is 54 017.56. The result is J,, = 712 new subscribers for the
month 22. On the other hand, optimization gives the different and more accurate results. The

following figure demonstrates the optimization by Solver

{ Solver Parameters

Set Objective: 5LSS
K L
a | o4 s
- 0'4= To: O Max ® Min O value Of: 0

B 1 0.11

Y 3 0.3! By Changing Variable Cells:

p 1 SLS1:5L83|
MSE 54017.56

Subject to the Constraints:

[SLS1:5LS3 <= 1
SLS1:5LS3 >=0

[4] Make Unconstrained Variables Non-Negative

Select a Solving Method: GRG Nonlinear

Solving Method

problems that are non-smooth.

Help Solve

Add

Change

Delete

Reset All

Load/Save

Options

Select the GRG Nonlinear engine for Solver Problems that are smooth nonlinear. Select the LP
Simplex engine for linear Solver Problems, and select the Evolutionary engine for Solver

Close

i

Figure 4.9.2

The constraints now involve all 3 constants
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MS

Mws ™ x

M N 0 P Q R S
g g |
I 0.4 |Change Constraint p
! i
I 0.1:
! 0.3! .
1 Cell Reference: Constraint: L
1 I r " T
sLs1:sLs3| ] <= ][0 = |
m17-56 | - — o | - - L J !
oK [ Add ] l Cancel j ;
Figure 4.9.3
M N (0] p Q R S
r 1
: 0.4: Change Constraint X
: 0.1:
! 0.3! :
bemmmss Cell Reference: Constraint: 1
i — ] r r =
| suswistsy =] [>= [v]]o =
54017.56 | - ' - - = |
OK Add Cancel
Figure 4.9.4
The result of optimization is given below
B c D  E  F 6 H 1 K L M
t Ye L T Se Ve & e a 0.101873
1 520 500 0 3 520 270400 B 0.34643
2 370 500 0 1 370 136900 Y 1
3 240 500 0 1 240 57600 P 1
a4 390 500 0 1 390 152100 MSE 49790.27
5 590 509.1686 3.17628 1.158752 590 348100
6 m 505-”36 O.Bm olssf‘ﬂ‘lﬁ 1% %AAN £7 AN A00S 00
7 310 486.9036 -5.97545 0.63€ Holt-Winters
8 470 479.8149 -6.36112 0975
9 650 4823672 -3.27326 1.347
10 540 4921437 1247587 1.05 g5
1 370 502.3309 4.344522 0.73€ 700
12 580 515.3791 7.359751 1.125 s00
13 720 523.9181 7.768274 1.374 500
14 610 534.1572 8.624237 1.141 900
15 440 548.3422 10.55065 0.802 >0
16 650 560.7966 11.21016 1.15% i$
17 790 572.2969 11.31067 1.38C
18 680 584.8144 11.72875 1.162 1 23 4 5 6 7 8 9 10111213 1415 16 17 18 19 20 21
19 510 600.5198 13.10639 0.84S _
—p—=0riginal ——g=—Forecast
20 720 614.3967 13.37333 1.171
21 860 627.2848 13.20522 1.370988 866.5753 -6.57533 43.23496
2 7447375

A

1 5Year

2| 2015
3 |

4|

5 |

6| 2016
7|

8 |

0 |

10| 2017
1|

12|

13|

14 2018
15|

16 |

17|

18 2019
18 |

20|

21 |

22| 2020
23 |

Figure 4.9.10
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which sets @ = 0.1019, 8 = 0.3464 and y = 1. The constant of seasonality was obtained to be
1. We see an explicit seasonal pattern in the time series. As a result, MSE = 49 790.27 which is
lowest among all models described above. As a conclusion, the cable TV provider has a more

accurate forecasts based on the Holt-Winters’ method which predicts y,, = 745.
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Chapter 5. Inventory Management

5.1. Introduction

Inventory is defined as a stock of items maintained by an organization to meet demands of
customers. Every type of organization keeps some form of inventory. Most frequently, demand
is uncertain and can be considered as random. An organization is concerned to maintain a safe
level of inventory to meet uncertain demand. Stocks of inventories may be built up to meet
the demands of cyclical or seasonal nature. Similarly, a company may purchase a large amount
of inventory to take advantage of price discounts and meet the surge in anticipated demand.
On the other hand, maintaining an excessive amount of inventory may result in unreasonable

cost.

There are several types of cost associated with inventory management. The most basic cost is
the cost of carrying. This is simply the cost of holding items in storage. Carrying cost depends
on the amount of inventory being stored and the length of storage time.

Another type of cost is the ordering cost. Ordering cost is the cost associated with replenishing
the stock of inventory being held. Ordering cost usually reacts inversely to carrying costs.
When the volume of inventory ordered is high, fewer orders are required, so the ordering cost
reduces. However, as long as the volume to be maintained increases, the carrying cost follows

accordingly.

The last type of cost covered in this chapter is the shortage cost. Shortage cost is associated
with a loss caused from inability to meeting a customer demand. Part of shortage cost may not
be measurable in dollar amounts (like loss of goodwill and reputation resulting in the loss of
customers). In this chapter, we consider shortage costs measured in dollar amounts. Shortage
costs may occur when the storage cost is unaffordable. So the shortage cost acts inversely to
the carrying costs. As the amount of inventory maintained in storage increases, so does the

carrying costs while the shortage costs decrease.

The goal of this chapter is to find an optimal balance (in the sense of total cost minimization)
between the amount of inventory to order and carry, number of orderings and timing of

ordering.
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5.2. Basic Economic Order Quantity Model (EOQ)

The most basic form of the inventory model is the basic economic order quantity model. The
objective in this model is to obtain an optimal order size that minimizes total cost. The total
cost consists of the carrying cost and the ordering cost. The time span between ordering time

and replenishment time is called the /ead time.
There are various assumptions in this model

- The model does not take shortages into account
- Lead time is assumed to be constant for every order
- Demand is not random, it is assumed to be constant over time

- Quantity ordered is received all at once

These assumptions are shown in the following figure

Q

i & e T ts te t
Lad time Lad time Lad time
Figure 5.2.1

In the figure, Q denotes the order size which is constant and same for all orders. R is the level
at which a new order is placed. This occurs at times ty, t3, ts, ... At times t,,ty,tg, ... the
quantities reach zero and the orders are received immediately all at once. Lead times (or
delivery times) illustrated in the figure are constant and equal. Since demands are assumed to
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be constant every time, the quantity depletes at a constant rate. The average inventory on an

annual basis maintained is equal to

. Q (5.2.1)
average inventory = 5

Q

Q/2

Figure 5.2.2

Since (5.2.1) holds, meaning the available inventory on an annual basis is Q\2, the annual
carrying cost is given by
(5.2.2)

annual carrying cost = CCE

where C, is the unit carrying cost per year. On the other hand, another type of cost in this
model is the ordering cost. Since the demand was assumed to be known and constant, the
number of orders per year is D/Q. As long as the cost per order, C, is known, the annual cost

of ordering is

annual ordering cost = C,— (5.2.3)

Q

Since in this simplest setting we assumed absence of the shortage cost (when quantity depletes
to zero, replenishment occurs immediately, setting the inventory size back to @), the total

inventory cost consists of these two costs (5.2.2) and (5.2.3) only
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D
TC = Cc% + Coa (5.24)

All quantities in (5.2.4) are constants and known except Q. Total cost as a function of an
independent variable Q is illustrated in the following figure

Q

Min TG | \v

Total Cost

Ordering Cost

Qopt Q

Figure 5.2.3

The objective is to minimize the total cost function. Q,,; in Figure 5.2.3 is the total cost
minimizing quantity. The total cost is minimized for the value of Q where the carrying cost
coincides with the ordering cost. Total cost minimization problem is solved by differentiating
the function with respect to @, equating the derivative function to zero and solving for Q. The
solution is Q,p¢. It has a geometric meaning shown in the figure above. In particular, at Q =
Qopt-> the tangent line of the total cost function is horizontal. This is the point where minimum
value is achieved. So, differentiating (5.2.4) and equating to zero yields

drc CoD C,

A

2C,D (5.2.5)
Qopt = C.
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As aresult

D
n Co Qopt

opt

Example 5.2

Fast Vehicles Inc. is the largest retailer of tires for sport cars. The company has several large
retail stores each getting supplies from the same warehouse. Inventory is kept in the central
warehouse and distributed to the retail stores as demanded on a daily basis. The company has
the carrying unit cost of $0.7 per tire and an ordering cost is $140. Demand is constant each
ear and estimated to be 8 000 tires per year. The company would like to know the optimal
order sizes minimizing the total cost. In addition, the company is interested in the number of

orders it will need to make annually and the time between orders.

The following figure demonstrates the computations

A B C D £
C. 0.7

2 Co 140

3 D 8000

$=

Qop:  1788.854 <--"=SQRT(2*B2*B3/B1)"
TChnin  1252.198 <--"=B2*B3/B4+B1*B4/2"
#of orders 4.472136 <--"=B3/B4"
cycletime 81.61648 <--"=365/B6"

-] O Wn

Figure 5.2.4

The quantities in B1l, B2 and B3 are given. B4 computes the optimal quantity according to
(5.2.5) that minimizes the total inventory cost computed in B5 by (5.2.4). So, 1789 tires must
be ordered to minimize the total cost to $1 252.2. In total, 4 orders will be made per year and
time between consecutive orders is 82 days. Note that the assumption in the above example is
that there are 365 working days per year. If we only consider working days excluding the
weekends and holidays, the remaining number of days would be divided by the number of

orders per year in order to obtain the time between orders (which is called the cycle time).

5.3. EOQ Model with Non-Instantaneous Receipt

The EUQ model with non-instantaneous receipt assumes that the orders are not received all
at once whenever placed. So the replenishment continues over some time which is constant.
The rate at which the order is received over time is known as the production rate. The rate at
which inventory is demanded is also assumed to be constant. However, the assumption that
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the shortage is not possible persists here as well. Thus the production rate exceeds the demand
rate. Note that in the model the ordering cost remains the same. The fact that the stocks are
being replenished over time does not affect the ordering cost. However, the carrying cost
changes since the average inventory level (5.2.1) is different. In addition, the maximum
inventory level is no longer @, but a quantity lower than Q. The reason for this is that the
order quantity is depleted during the order receipt period. The following figure demonstrates
the specifics of the model

maximum inventory

Q(l _E) ...............................................................
p

average tnqventory

Figure 5.3.1

Attimes tq, t3, t5, the orders are placed and the stocks start to fill at some rate. At times ¢,, ty, tg,

replenishment of stocks end. The maximum level the inventory can reach is

maximum inventory level = Q — %d =Q(1— g) (5.3.1)
Correspondingly, the average inventory is determined as
d
average inventory level = %(1 — E) (5.3.2)
The carrying cost is affected by the level of inventory and is defined as
d
total carrying cost = C, e (1- ;) (5.3.3)
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where C, is the carrying cost per unit of inventory. Total annual inventory cost is the sum of
the carrying cost and the ordering cost. The latter remains unchanged

D o d (5.3.4)
TC=Co=+C=(1—=
OQ+ C ( p)

In order to minimize the total cost by the quantity, proceeding by differentiating the function

with respect to quantity variable and equating to zero yields
arc c D N C. ( d)
aQ  °0% 2

from which

(5.3.5)

Example 5.3

In the previous example, Fast Vehicles Inc. had an ordering cost of $140 and a carrying cost of
$0.7 per tire annually. In addition, the annual demand was D = 8 000. Since we assume 365
working days per year, it turns out that the daily demand is d = 8000/365 = 21.92. On the
other hand, the production rate, (which must satisfy p > d) is p = 160 units per day.

Optimal value of Q and the corresponding minimum total cost is computed below

A B C D E F
Ce 0.7

2 C, 140

3 D 8000

4 p 160

5 d 21.91781 <--"=B3/365"

g Qope 1994.64 <--"=SQRT(2*B2*B3/(B1*1-B5/B4))"

7 | TChin  1163.995 <--"=B2*B3/B6+B1*B6/2%(1-B5/B4)"
run length  12.4665 <--"=B6/B4"

#of runs 4.010749 <--"=B3/B6"

10 /max Inv. 1721.402 <--"=B6*(1-B5/B4)"

oo

Te

Figure 5.3.2

In Figure 5.3.2 above, @, is computed by (5.3.5). The production run length is interpreted as

time it takes to replenish the stock to Q,,; and is computed as follows
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production run length = %

Number of production runs is computed as

D
# of production runs = —

Q

Ultimately, the maximum level of inventory is computed according to (5.3.1). As a result, the
company has 4 production runs in total during a year, each lasting for 12 days receiving 1995
tires per order. Maximum inventory level that can be reached is 1721 units of tires. The total
cost resulting from these numbers is $1 164.

5.4. EOQ Model with Possibility of Shortages

In the previous two models, the shortages were not allowed. At any point in time, the
inventory stocked were enough to meet the external demand. In this section, we allow the
possibility of shortage. When shortage occurs, the company is not able to meet the demand
immediately. However, another assumption in this section is that the demand not met because
of the shortage can be back ordered. Thus the customer gets the order later and all demand is

\

eventually met. The following figure illustrates this scenario

Figure 5.4.1

The maximum inventory never reaches Q because the demand during shortage must be
compensated by late delivery. So, the maximum inventory level reached is Q — S. Q and S are
inversely related. Greater the value of Q, less the shortage but the carrying cost increases
accordingly. t; denotes the time it takes for the inventory level (starting from Q — S) to deplete
completely. So, from the complete replenishment, it takes t; to start the shortage period. The
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shortage period lasts for t, after which the stocks are replenished and set back to the maximum
level Q — S again and cycle starts over again. The total cost now consists of three components
— the total ordering cost for which the ordering cost per unit remains unaffected, the total
carrying cost which is diminished as shortage increases, and the total shortage cost which

increases as  decreases.

All of these costs are computed by the following formulas

total ordering cost = C, 6 (5.4.1)
total carrying cost = C, —————
2Q
52 5.4.3
total shortage cost = Cs— ( )
°20
In the last formula C; is the unit cost of shortage.
Combining these components results in the total inventory cost function
Q-5 (5.4.4)
TC = C — + Co——+ C —
°2Q 2Q °Q
Total Cost

\_/ e
Min TC
__/O(ng(:ost

Shortage Cost

Qopt Q

Figure 5.4.2
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The slope of the total cost function is zero wherever it has a horizontal tangent line. In this
model we do not only optimize Q, but also the shortage level S. Skipping the differentiation
steps as shown in previous sections, it can be shown that the optimal quantity and the shortage
levels are given by

) (Cs + CC> (54.5)
Qopt - CC CS
Ce (5.4.6)
Sopt = Qopt (m)
The time during which inventory is on hand t; shown in Figure 5.4.1, is
i Q—-S (5.4.7)
U

and the time during which there is a shortage is

S (5.4.8)

Example 5.4

The examples in the previous sections are extended here by allowing the shortages. All
quantities remain the same, the only additional constant here is the shortage cost per unit of
tire, which is Cg = 1.85. In addition, note that in this model the replenishment occurs
immediately. So there are no longer the need for p (production run) and d (demand per day)

quantities.
A B C D £ F G H
Ce 0.7
2 Co 140
3 Cs 1.85
4 D 8000

5 Qopr  2100.193 <--"=SQRT(2*B2*B4/B1*(B3+B1)/B3)"
6 Sopt 576.5236 <--"=B5*B1/(B1+B3)"
TCrin  1066.569 <--"=B3*B6/2/(2*B5)+B1%(B5-B6)*2/(2*B5)+B2*B4/B5"

Figure 5.4.3

Here the optimal quantity to order each time is 2 100 units of tire and the optimal shortage is
577 tires. These quantities minimize the total cost and set it to $1 067. The total ordering,
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carrying and shortage costs individually are computed according to (5.4.1), (5.4.2) and (5.4.3)
shown below

A B C D £ F G
1 G 0.7

2 Co 140

3 Cs 1.85

4 D 8000

5 Qope 2100.193 <--"=SQRT(2*B2*B4/B1*(B3+B1)/B3)"

6 Sopt 576.5236 <--"=B5*B1/(B1+83)"

7 | TCnin 1066.569 <--"=B3*B6/2/(2*B5)+B1*(B5-B6)"2/(2*B5)+B2*B4/B5"
g |C.Ordering 533.2843 <--"=B82*B4/B5"

9 |C.Carrying 386.8925 <--"=B1%(B5-B6)~2/(2*BS)"

10 |C.Shortage 146.3918 <--"=B3*B6~2/(2*B5)"

Figure 5.4.4

Ultimately, the times of inventory on hand and times of shortage computed in the cells B11
and B12 below.

A g C D £ F G
1 C. 0.7

2 Co 140

3 Cs 1.85

4 D 8000

: Qopr 2100.193 <--"=SQRT(2*B2*B4/B1*(B3+B1)/B3)"

i Sope 576.5236 <--"=B5*B1/(B1+B3)"

7| TCnin 1066.569 <--"=B3*B62/(2*B5)+B1*(B5-B6)"2/(2*B5)+B2*B4/B5"
8 C.Ordering 533.2843 <--"=B2*B4/B5"

9 C.Carrying 386.8925 <--"=B1%(B5-B6)*2/(2*B5)"

10 C.Shortage 146.3918 <--"=B3*B6/2/(2*B5)"

11 t; 0.190459 <--"=(BS5-B6)/B4"
12 t; 0.072065 <--"=B6/B4"
Figure 5.4.5

The results are as follows. The time during which inventory is on hand is 0.19 year which is
69.5 days. And the time during which there is a shortage is 0.07 year, or 26.3 days.
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5.5. Discounts on Ordered Quantity

The basic economic order quantity model examined in Section 5.1 only considers the carrying
cost and the cost of order. Adding an additional component — price of purchase transforms the
model by taking the possible discounts into account. Depending on the quantity ordered, there
may be two scenarios — in case of a quantity discount, carrying costs may be fixed and constant
or it may be computed as a percentage of the purchase price. This section covers the first case

implying that the carrying costs are constant.

Purchase prices differ depending on the order size.

Quantity Price
1 =0<q; P1
2 =0 <4q; P2
93 <0 <4q, p3
s < Q <gs P4

Table 5.5.1

q; < q;,0i > pj,1 <}j. So, the prices are set in a descending order in the table above. Greater
quantity implies less purchase price. Given the values of cost of order,C,, cost of carrying, C,
and demand, D in the basic EOQ model, the total cost minimizing optimal quantity (ignoring
the price discounts) is obtained by (5.2.5) to be

20.D (5.5.1)
Ce

Qopt =

Total cost function now includes two elements from Section 5.2 — the carrying cost and the
ordering cost, and an additional component, the purchase price to be paid
CoD Q (5.5.2)

+C,~+PD
Q ‘2

TC =

As long as the total cost minimizing quantity Q,,, is given by (5.5.1), depending on its value,

the purchase price, PD depends on this value and is taken from Table 5.5.1.

Example 5.5

Fast Vehicles Inc. in Example 5.2 had the carrying cost per tire C, = $0.7, ordering cost C, =
$140 and an annual demand of 8 000 tires. In addition, the following price discounts are
offered by the supplier



Decision Modelling 119

Quantity Price

1<Q <500 $150

500 < Q <1000 $130

1000 < Q < 5000 $120

5000 =@ $115
Table 5.5.2

e.g. the purchase price for an ordered quantity within 500 and 1000 is $130 while the price
for a quantity within the range of 1000 and 5000 is $120.

Figure 5.5.1 shows the computations of the optimal quantity and total cost corresponding to
the price discount

A B C D E F G H I J K
1 C. 0.7 Range Price
2 C, 140 1 500 150
3 D 8000 500 1000 130
4 Qopr 1788.854 <--"=SQRT(2*B2*B3/B1)" 1000 2000 120
5 |C.Ordering 626.099 <--"=B2*B3/B4" 2000  + 115
6 C.Carrying 626.099 <--"=B1*B4/2"
7 |Purchase Price 120 <--"=IF(AND(B4>=F2,B4<G2),H2,IF(AND(B4>=F3,B4<G3),H3,IF(AND(B4>=F4,B4<G4),H4,H5)))"
8 |PD 960000 <--"=B7*B3"
9 | TCnin 961252.2 <--"=B5+B6+B8"
Figure 5.5.1

The cell B4 computes Q,,; according to (5.5.1) to be 1 789 units. This number falls within the
range of 1000 and 2000. So, the purchase price is $120 computed in the cell B7. Total cost is
computed in the column B9 which is $961 252.2. This cost is minimum attainable in terms of
carrying and order costs. However, when the purchase price is added to it, further
investigation is required to check if the quantity ordered should be increased to take advantage
of larger discount. If instead of purchasing 1 789 units of tires, what if 2 000 is purchased?
Figure 5.5.2 shows the total cost computed for ¢ = 2000 (this is no longer Q,,; according to
its definition from 5.5.1)
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A B C D 2 P G H I J K
C. 0.7 Range Price
2 Co 140 1 500 150
3 D 8000 500 1000 130
4 Q 2000 <--"=SQRT(2*B2*B3/B1)" 1000 2000 120
5 |C.Ordering 560 <--"=B2*B3/B4" 2000 - 115
6 [C.Carrying 700 <--"=B1*B4/2"
7 |Purchase Price 115 <--"=IF(AND(B4>=F2,B4<G2),H2,IF(AND(B4>=F3,B4<G3),H3,IF(AND(B4>=F4,B4<G4),H4,H5)))"
8 |PD 920000 <--"=B7*B3"
g [NTC 921260 <--"=B5+B6+B8"
Figure 5.5.2

In Figure 5.5.2, the quantity is set to 2 000. Corresponding purchase price is $115. Cost of
ordering and carrying is recalculated accordingly. Most importantly, the total cost
corresponding to this new purchase price now becomes $921 260 which is less than $961 252.2
computed by Qype = 1789. So, as long as $921 260 < $961 252.2, the company should take

the maximum discount price and order 2 000 units of tire.

5.6. Discounts on Ordered Quantity with Constant Carrying Costs as a Percentage of

Price

In addition to the previous model where the discounts were applied for increasing amount of
inventory ordered, the discount can be applied to the carrying costs. This section covers the
case where the annual carrying cost is a fixed percentage p (expressed in decimals) of the
purchase price. Given the fixed percentage of the purchase price, Table 5.5.2 is

Quantity Price Carrying Cost
G =0<4q, P1 p1p
g2 = Q <q3 P2 p2p
4z = Q <qq P3 p3p
qs = Q <gs P4 p4P
Table 5.6.1

Given the values of carrying and ordering costs, the optimal quantity without a price discount

2C,D

is again given by Qg = which is the same as (5.5.1). The total cost function is also

c

identical to (5.5.2) and is defined as TC =

COQD + C, % + PD.The only difference is that the

purchase price P and the carrying cost (. now both depend on Q.
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Example 5.6

In Example 5.5, consider that in addition to the information given, there is also a discount in
carrying cost depending on ordered quantity. Assuming he percentage of price is p = 0.1. The

following table illustrates the discounts for various ranges of quantities

Quantity Price Carrying Cost

1<Q <500 $150 $150(0.1)=$15

500 < Q <1000 $130 $130(0.1)=$13

1000 < Q <5000 $120 $120(0.1)=$12

5000 =@ $115 $115(0.1)=$11.5
Table 5.6.1

The value of carrying cost without discount would be C. = $0.7. The given values of C, =
$140 and D = 8 000 per year result in the optimal quantity (without discount) shown in the

following figure
A B C D E P G o [ J b

C. 0.7 Range Price Carrying Cost
2 C, 140 1 500 150 15
3 D 8000 500 1000 130 13
4 Qopt 1788.854 <--"=SQRT(2*B2*B3/B1)" 1000 2000 120 12
5 C.Ordering 626.099 <--"=B2*B3/B4" 2000 + 115 11.5
6 C.Carrying 626.099 <--"=B1*B4/2"
7 Purchase Price 120 <--"=IF(AND(B4>=F2,B4<G2),H2,IF(AND(B4>=F3,B4<G3),H3,IF(AND(B4>=F4,B4<G4),H4,H5)))"
8 |Carrying Cost 12 <--"=IF(AND(B4>=F2,B4<G2),12,IF(AND(B4>=F3,B4<G3),13,IF(AND(B4>=F4,B4<G4),14,15)))"
9 PD 960000 <--"=B7*B3"
10| TCin 961252.2 <--"=B5+B6+B9"

Figure 5.6.1

Since Q,p,¢ = 1788.85, then purchase price is $120 and the carrying cost is $13. Carrying costs
in the column I are computed by taking 10% of the prices in the corresponding row. Ordering
and carrying costs are computed as before and the total cost minimized is $961 252.2. In order
to determine which order quantity is more beneficial, we compute the total cost for 2 000 units
of tire. The computations are demonstrated below
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A B C D E F G H I J
1 Ce 0.7 Range Price Carrying Cost
2 Co 140 1 500 150 15
3 D 8000 500 1000 130 13
4 Q 2000 <--"=SQRT(2*B2*B3/B1)" 1000 2000 120 12
5 C.Ordering 560 <--"=B2*B3/B4" 2000 - 115 11.5
6 C.Carrying 700 <--"=B1*B4/2"
7 |Purchase Price 115 <--"=IF(AND(B4>=F2,84<G2),H2,IF(AND(B4>=F3,B4<G3),H3,IF(AND(B4>=F4,B84<G4),H4,H5)))"
8 |Carrying Cost 11.5 <--"=IF(AND(B4>=F2,B4<G2),12,IF(AND(B4>=F3,B4<G3),13,IF(AND(B4>=F4,B4<G4),14,15)))"
9 |PD 920000 <--"=B7*B3"
10| TC 921260 <--"=B5+B6+B9"

Figure 5.6.2

In case of Q = 2 000, the purchase price is set to $115 and the carrying costs reduces to 11.5.
Ultimately, the total cost is $921 260 which is less than $961 252.2 obtained in the context of
the basic EOQ model. So, the conclusion here is that the Fast Vehicles Inc. should take
advantage of the discounts and order 2 000 instead of 1789 units.
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Chapter 6. Queuing Analysis

6.1. Introduction

Queues are one of the most common occurrences in everyone’s daily life. Anyone who goes
shopping or to a movie, frequently experiences the inconvenience of waiting in line. Queues
are not only related to inconvenience for customers and companies, but might also be related
to significant expenses. The expense arises from the fact that customers seeing the queue prefer
to avoid it and make a choice for the competitor’s service or buy an alternative product. Thus,

reduction of queue is important for companies, especially with service related operations.

Queues form when customers or things arrive at a rate faster than then can be served. Most of

the organizations have sufficient service capacity to handle queues in the long run.

Queuing analysis is a probabilistic form of analysis. So the managers have some operating
characteristics to influence on - such as the average time a customer spends in the queuing line
or the rate of arrival of new customers. There are several ways companies can influence these

characteristics and speed up procedures of providing quality services.

The objective of this chapter is to cover two of the most common types of queuing systems —
a single server system and a multiple server system. The simple server system is the simplest
form of queuing system. It is covered in Section 6.2 and demonstrates the fundamentals of a
queuing system. The multiple server system involves more complex analysis and assumes that
the single waiting line is being served by several servers. As a result, decisions aimed to reduce

the queues and speed up the service are discussed.

6.2. Single Server Model

The simplest form of the queuing system is the Single Server system. The assumption is that
the customers arrive at a Poisson arrival rate and are served at exponential rates. Denoting the
number of customer arrival rate as A (average number of customer arrivals per time period)
and the customer service rate as u (average number of customers served per time period), the
model assumes that A < p holds. If the inequality did not hold (i.e. 4 > u), the model would
result in paradoxical situation when at some point the queue gets unreasonably long and the

waiting line length approaches infinity in the long run.

Customer in the queuing system is either in the waiting line or being served. Given the

inequality A < p, the probability that no customer is in the queuing system is given by

A
o1 (6.2.1)
U
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This is equivalent to probability that the server is being idle. The probability that n
customers are in the queuing system is

P, = (g) Py = (g) (1-2) (6:2.2)

The average number of customers in the queuing system is

L A (6.2.3)
u—A

and the average number of customers in then waiting line is

L ¥ (6.2.4)
T u(u—-2)

The average time a customer spends in the queuing system is given by

1 L (6.2.5)
u—~1 A

and the average time a customer spends in the waiting line is

_ A (6.2.6)
Yo = ia=n

The probability that the server is busy, or equivalently, the probability that the customer has
to wait, known as the utilization factoris

U A (6.2.7)

u
Note that since the event — server is busy, is mutually exclusive to the event — server is idle,

the utilization factor coincides with 1 — P,,.

Manager of the company has several mechanisms to influence the queue length. First option
is to add a new employee. In this case the customers in the same queue line are served faster.
In other words, the service rate A increases. However, the company has to make additional
expense of hiring an additional employee. Another option is to add a new checkout counter.
Construction of the new checkout counter is significantly costly and it includes the costs of
each additional cashiers. This results in splitting the queue line into two lines. It is assumed
that the customers divide themselves equally between the two lines making the arrival rates
half of the prior arrival rate for a single checkout counter. Comparing the total costs of both
options, the manager of a company decides which option to choose. Total cost is the sum of
the cost of service and the cost of waiting in the queue.



Decision Modelling 125

Cost
Total Cost
Cost of service
Cost of waiting
0 Service level Level of service
to maintain
Figure 6.2.1

FExample 6.2

Toy Gift store sells toys for kids. The store manager has to frequently handle queues, especially
on Christmas. The customer arrival rate is computed to be A = 25 customers per hour while
the customer service rate is 4 = 30 per hour. By applying these values into the formulas above,

the manager computes the following quantities

A B C D E
1 A 25
2 [z 30
3

0.166667 <--"=1-B1/B2"
5 <--"=B1/(B2-B1)"
4.166667 <--"=B12/(B2*(B2-B1))"
0.2 <--"=1/(B2-B1)"
0.166667 <--"=B1/(B2*(B2-B1))"
0.833333 <--"=B1/B2"

~] O Wn b
SS® =

o0 -

Figure 6.2.2

According to Figure 6.2.2, the probability that the server is idle is P, = 0.1667, which means
that the server is serving customers by U = 0.8333 probability (i.e. 83% of times the server is
busy). On average there are L = 5 customers waiting in the total queuing system (i.e. either
waiting in the queuing line or being served). The average number of customers in the waiting
line is L, = 4.17. The average time a customer spends in the waiting line is W = 0.2 hours



126 T. Toronjadze (ed.)

which is 12 minutes and the average time a customer spends in the waiting line is W, =0.1667

hours.

Considering these results, the manager now has two options. She can either add a new
employee or add a new checkout counter. Let us first consider the case of adding a new

employee that results in additional weekly cost.

In particular, addition of an extra employee will cost the Toy Gift store $140 per week. By
analyzing statistical data, the manager concluded that by adding a new employee, for each
reduced minute that customer spends in the waiting system, the store avoids a loss of $70 per
week. This loss would have arisen from the situation when a customer simple walks away to
avoid waiting in the queue. The effect of adding a new employee is the increase in service rate.
If the previous service rate was y = 30 customers served per hour, now it is 4 = 40 per hour.
Assuming the arrival rate remains the same A = 25, we have the same quantities computed

below

25
40
0.375 <--"=1-B1/82"
1.666667 <--"=81/(B2-B1)"
1.041667 <--"=B172/(B2*(B2-B1))"
0.066667 <--"=1/(B2-B1)"
0.041667 <--"=B1/(B2*(B2-B1))"
0.625 <--"=81/82"

B w M

U
C:&E E&f“‘r-g:l': &~

Figure 6.2.3

Note that by adding a new employee, the waiting time in the queuing system is reduced to
W = 0.0667 which is 4 minutes. Initially it was 12 minutes. So there is 8 minute reduction in
total waiting time. Since for each reduced minute the store saves the loss of $70, the total
saving is $70 x 8 mins = $560 per week. Deducting the extra employee cost yields the profit of
$560 - $140 = $520.

The manager has another option. Instead of adding a new employee to the existing checkout
counter, she can add a new checkout counter. This would split the waiting line in two separate
lines with equal number of customers waiting in each. The effect of adding the new checkout
counter would be the reduction in customer arrival rate. However, the cost of constructing it
is an initial $5 000 plus an extra $180 per week for an additional cashier. The service rate would

remain the same p = 30, but the arrival rate per counter is now A = 12.5 per hour.
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B C D °
12.5
30
0.583333 <--"=1-B1/82"
0.714286 <--"=B1/(B2-B1)"
0.297619 <--"=B1~2/(B2*(B2-B1))"
0.057143 <--"=1/(82-B1)"
0.02381 <--"=B1/(B2*(B2-B1))"
0.416667 <--"=B1/B2"

w (4]

8

-] O Un

SSSFESF* »»

o

Figure 6.2.4

Since the arrival rate is reduced, the probability that the server is idle is increased to P, = 58%
and the utilization factor (otherwise interpreted as the probability that the server is busy) is
reduced to U = 42%. The waiting time in the total queuing system is now W = 0.0571 hours
which is 3.43 minutes. Recall that initially this quantity was 12 minutes, so there is 8.57
minutes reduction. This would save the store manager 8.57 x $70 = $600 per week. Subtracting
the additional cost per week, which is $200 results in the final profit for the store which is
$600 - $200 = $400 per week.

Because the initial payment of this project was $5 000, it would take the store $5000/400=12.5
weeks to break even from this project. After 12.5 weeks, the store starts to make profits of $400

per week.

6.3. Finite Queue Length

In (6.2.2), P, is defined to be the probability of n customers waiting in the waiting line. If M is
defined as the maximum number of customers allowed in the system, then P, is the probability
that a customer will not be allowed in the system. This situation may arise because of some
natural restrictions like the space for the waiting line may be limited or the model can be
applied to cars in the drive queue of a fast food restaurant. Correspondingly, the equations
(6.2.4), (6.2.5) and (6.2.6) can be rewritten as

L A(1 — Py) (6.3.1)

7
which is the average number of customers waiting in the queuing line. The average time a

q

customer spends in the entire queuing system is

_ L (6.3.2)
W = A(1 = Py)
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and the average time a customer spends in the entire queuing system is

1
W= w1 (6.3.3)

The probability that the system is empty corresponds to the probability P, (i.e. no one is in
the system) defined as

14 (6.3.4)
u
Po =——m7

- (%)

and the probability that the system is full and no customer will be allowed in is
N (6.3.5)
u = o ()

The average number of customers, L, used in the equation (6.3.1) is defined as

_ Mu M+1) (%)MH (63.6)

1_& 1_(%)M+1

Example 6.3

Given the values of A = 25, u = 30 and the maximum number of customers allowed is M = 5.

The quantities in equations (6.3.1) — (6.3.6) are computed below

A B C D E F G H
1 p) 25
2 u 30
3 M 10
4 Py 0.192586 <--"=(1-(B1/82))/(1-(B1/B2)7(B3+1))"
5 Pu  0.031104 <-"=B4*(B1/82)"B3"
6 L 3.289291 <--"=(B1/B2)/(1-B1/B2)-((B3+1)*(B1/B2)~(B3+1))/(1-(B1/B2)(B3+1))"
7 G 2.481878 <--"=B6-B1%(1-B5)/B2"
8 w 0.135795 <--"=B6/(B1*(1-B5))"
9 | W 0.102462 <--"=B8-1/B2"
1| U 0.807414 <--"=1-B4"

Figure 6.3.1
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So in the example above where the average number of arrivals per hour is 25 customers and
the average service rate is 30 customers per hour with an additional restriction that maximum
10 customers are allowed to wait in the system, the probability that no one is in the system is
Py = 0.1926. and nearly U = 80% of times the server is busy. The probability that the
maximum number of customers has been reached and no additional customer will be allowed
is P;y = 0.0311. The average number of customers waiting in the queuing system is L = 3.29
and on average they spend W = 0.1358 hours in the system.

If the queues are associated with costs as described in Example 6.2, the manager may proceed
with one of the options described there — either consider adding new employees which will
result in additional cost per period, or consider adding a new checkout counter with additional
cashiers that will result in significant down payment and additional cost per period.

6.4. Finite Calling Population

For some waiting systems, there might be a limited number of potential customers that can
arrive at a service facility. This situation is referred to as a finite calling population. Given the
limited number of potential customers N (we call it the population size), in the single server
model with a Poisson arrival and exponential service times, the equations (6.2.1) — (6.2.7) can
be redefined as

1 6.4.1
PO = n ( )

291’:0 ﬁ (%)

which is the probability that no customer is in the waiting system. The probability that n

customers are in the waiting system is defined as

N! N" (6.4.2)

P =—(—) Pyn=12,..,N
TRV A

In addition, the average number of customers in the waiting line is

A+
L= N-— Tu (1-P) (6.4.3)

and the average number of customers in the entire system (being served or waiting in a line)
is given by
L=Ls+(1—-PF) (6.4.4)

The time a customer spends on average in the queuing line is
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_ Ly (6.4.5)
m@"(Nw—L)A

while the average time a customer spends in the queuing system is

1
W=+ (6.4.6)

Example 6.4

Consider a Memory Devices Inc. manufacturing plant which produces memory cards of
various sizes. Due to a large demand for production, the plant operates 7 days per week and
has 10 automated manufacturing machines in total. Continuous operations causes the
machines to break down frequently and they end up in the repairing queue. There is a repair
person assigned to this task. In Memory Devices Inc. each machine operates on average of 180
hours before it breaks down and a repair person is called. The average repair time of a single
machine is 4 hours. The breakdown rate follows a Poisson distribution and the service time
follows an exponential distribution. The company needs to analyze the machine idle time due
to breakdowns and determine if the repair stuff is sufficient or needs to hire assistants to the
senior repair person.

Since P, in the equation (6.4.1) contains the denominator with the sum of numbers, it is
convenient to have it computed separately. This is done in the following figure

A B & D E F G H | J K
A 0.005556 <--"=1/180" Ny
u 0.25 <--"=1/4" n m(ﬂ)
10 0 1 <--"=FACT($B$3)/FACT($BS3-F3)*($BS1/$BS2)AF3"
1 0.222222
2 0.044444
3 0.007901
4 0.001229
8 5 0.000164
6
7
8
9

w mr
=

158

1.82E-05
1.62E-06
1.08E-07
4.8E-09
10 1.07e-10

s W~

Figure 6.4.1

The column F in the figure contain each of the elements in the sum of the denominator in
(6.4.1). The sum of these numbers is the denominator as a single number. The following figure
shows the computations of equations (6.4.1) — (6.4.6). Note that in Figure 6.4.2, the sum of the
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values in the column F is not explicitly computed but is included directly in the cell B4 which
computes Py. As a conclusion, U = 21.63% is the probability that the repair person is busy.
Out of 10 operating machines, an average of almost L = 0.27 which is 0.27/10=0.027=2.7% are
broken down and waiting in the queue of being repaired. Each machine that is broken down
is either waiting in the line or being repaired for W = 4.94 hours. This is the time the machine
is idle for. As long as the repair person is busy only for 21.63% of times, it can be concluded
that he is adequately handling his job and no assistant is needed to be hired.

A E C D E F G H J K
A 0.005556 <--"=1/180" Ntofa\"
2 u 0.25 <--"=1/4" n (N —n)! (;_;)
3 N 10 0 1 <--"=FACT($B$3)/FACT($BS3-F3)*($BS1/5BS2) F3"
4 Py 0.783711 <--"=1/SUM(13:113)" 1 0.222222
5 L 0.266988 <--"=B6+(1-B4)" 2 0.044444
6 L, 0.050699 <--"=B3-(B1+B2)/B1* 3 0.007901
7 w 4.937619 <--"=B8+1/B2" 4 0.001229
s | W, 0.937619 <--"=B6/((83-B5)*B1] 5 0.000164
9 U 0.216289 <--"=1-B4" 6 1.82E-05
10 7 1.62E-06
1 8 1.08E-07
2 9  4.8E-09
3 10 1.07E-10
Figure 6.4.2

6.5. The Multiple Server Model

Up to this point, all models described the single server model implying that the customers
waiting in the line would all end up with a single server. A little more complex scenario is the
multiple server model where customers lined up in a single waiting line end up with different
servers. The examples of this model would be the airport check in counter or a bank office.
The assumption of the arrival rate being Poisson distributed and the service time being
exponentially distributed still persists. In addition, there is an infinite calling population
meaning the population size is not restricted (unlike in Section 6.4).

The characteristics of this model is the arrival rate A, which is the average number of arrivals
per time period. The service rate u which is the average number of customers served per time
period per server. c is the number of servers and cu is the mean effective service rate for the
model for which cu > 4 must hold to avoid infinitely long queue.

In this model, the probability that no customer is waiting in the queuing system is given by
the following equation
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1 (6.5.1)

Eam @ T+ a6 o

The probability that n customers are waiting in the queuing system for n > ¢

Py =

B 1 " (6.5.2)
T clenc (;) Fo
and for n < ¢ we have
1 /\" (6.5.3)
b= ;(;> Fo

The average number of customers in the entire queuing system is given by

u (%)C . (6.5.4)

L=zl *y

while the average number of customers in the waiting line is

A
Ly=L-~ (6.5.5)
U
The time a customer spends on average in the waiting system is given by
L (6.5.6)
W == 5.
A
and the average time a customer spends in the queuing line is
1 L (6.5.7)

W,=W-—=-1
q U y

Finally, the probability that a customer arriving in the system must wait because all servers
are busy at once is

_1 (A)C cu (6.5.8)
cu—A7

Example 6.5

Consider again the Toy Gift store with A = 25 per hour. In that example, the average service
rate was 30 customers per hour. Suppose that instead of 30, now the average service rate is 12
customers per hour per service representative. There are 3 store representatives (servers) in
total. Adding a new representative leads to an additional weekly expense of $200 and for each
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reduced minute of waiting in the system, the store saves $70. Using the formulas (6.5.1) —
(6.5.8), the following figure illustrates the computations

A £ C D £ F G H
1 A 25 <--"=1/180"
2 u 12 <--"=1/4"
3 c 3
4 Py 0.098178 <--"=1/(SUM(F3:F5)+1/FACT(B3)*(B1/B2)~B3*B3*B2/(B3*B2-B1))"
5 L 3.183847 <--"=B1*B2*(B1/B2)"B3/((B3-1)*(B3*B2-B1)"2)*B4+B1/B2"
6 L, 1.100513 <--"=B5-B1/B2"
7 w 0.127354 <--"=B5/B1"
g | W 0.044021 <--"=B6/B1"
9 By 0.484226 <--"=1/FACT(B3)*(B1/B2)*B3*B3*B2/(B3*B2-B1)*B4"
10
12 12\
13| n F(Z)
14 0 1 <--"=1/FACT(E3)*(SBS$1/$BS2) E3"
15 1 2.083333
16 2 2.170139

Figure 6.5.1

The probability that there is no customer waiting in the queuing system is P, = 0.0982 and
the probability that all servers are busy at the same time and the customer arriving in the
system must wait for the service is P,, = 0.4842. Since the denominator of P, includes the sum,

it is separately computed in the cells B14 - B16.

The average number of customers waiting in the system is L = 3.1838 and they spend on
average W = 0.1274 hours. The average number of customers in the waiting line (waiting to

be served) is L; = 1.1005 and they spend on average W, = 0.044 hours.

If the manager decides to add a new server, that will result in the following computations
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A B C D E F G H
1 A 25 <--"=1/180"
2 u 12 <--"=1/4"
3 ¢ a4
4 Py 0.119067 <--"=1/(SUM(F3:F5)+1/FACT(B3)*(B1/82)*B3*B3*B2/(B3*B2-B1))"
5 L 2.50734 <--"=B1*B2*(B1/B2)"B3/((B3-1)*(B3*B2-B1)"2)*B4+B1/B2"
6 L, 0.424006 <--"=B5-B1/B2"
7 w 0.100294 <--"=B5/B1"
g | W 0.01696 <--"=86/B1"
9 Ry 0.195043 <--"=1/FACT(B3)*(81/82)"B3*B3*B2/(B3*B2-B1)*B4"
12 1/2\"
13 n F(Z)
14 0 1 <--"=1/FACT(E3)*($BS$1/$BS2)~E3"
15 1 2.083333
16 2 2.170139
17 3 1.507041

Figure 6.5.2

Addition of the new server caused the probability that a customer has to wait to reduce to
P, = 0.195. The probability that the no customer has to wait is not increased significantly,
only to Py = 0.1191. The average number of customers in the system with ¢ = 4 servers now
is L = 2.5073 and the average waiting time is W = 0.1 hours which is 6 minutes.

If the number of employees is raised to ¢ = 4 (i.e. increased by 1), the difference in waiting
time in the system is 60(0.1274 — 0.1003) = 1.6204 minutes. So, the saving from this
reduction is $70 x 1.6204 = $113.43. However, the weekly expense increased by $200. So, there
is a negative profit. The manager decides that adding a new employee does not contribute to a
positive profit and unlike the situation described in Example 6.2, no further action is taken in

this sense.



