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PREFACE 
 
The purpose of this book is to introduce the computational solutions of decision making 
techniques to students, academicians and other interested parties. The book can be used to 
review and refresh knowledge in business forecasting, time series analysis and business 
modelling as well as for integration of academic achievements in the study process. 
 
The book has been written based on Business Research Center’s extended seminars. 
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Chapter 1. Simple Regression 

1.1. Introduction 

Establishment of correspondence between various types of phenomena is often crucial to make 
an applicable analysis of business process. Business and economics applications make extensive 
use of relationships between variables.  

 Real estate agent may be interested in predicting the property price based on its area. 
 Supermarket manager may wish to forecast the demand for a certain product given its 

selling price. 
 Medical doctor may need to know the concentration of a certain drug in the 

bloodstream based on time passed after injection. 

These types of relationships can mathematically be expressed as 

𝑌 = 𝑓(𝑋) 

where the function 𝑓 can take linear and nonlinear forms.  

In many applications, the form of the relationship is not precisely known. In some situations 
we are interested in the limited portion of the nonlinear relationship that can be approximated 
by linear relationship to some extent. Here, the primary goal is to present linear models based 
on least squares regression analyses. Once the linear relationship between variables is 
established, the next task is to measure the reliability of the model. Lastly, some coefficients 
measuring the strength of predictive power of the model are presented. 

1.2. Correlation Analyses 

The main goal of this section is to measure a linear relationship between two variables. First, 
the existence of linear dependence needs to be tested. As we begin our analyses, we conclude 
that if the pair of linearly related random variables 𝑋 and 𝑌 is being considered, a scatter plot 
of the joint observations on this pair will tend to be clustered around a straight line. 
Conversely, if they are not linearly related, then the scatter plot will not follow a straight line. 

Correlation coefficient has a wide range of applications in business and economics. In many 
applied business and economics related problems, there is an independent variable 𝑋, and a 
dependent variable 𝑌, whose value depends on the value of 𝑋. In order to check the existence 
of linear relationship between 𝑋 and 𝑌, we test the following hypothesis 

𝐻଴: 𝜌 = 0 
𝐻ଵ: 𝜌 ≠ 0 

(1.2.1) 
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where 𝜌 is the population correlation coefficient. The null hypothesis implies that there is no 
linear relationship between two random variables and the alternative hypothesis implies the 
opposite. As long as our interest is to test whether there is any kind of linear relationship 
(negative or positive), we do not concern ourselves with the sign of the coefficient. It can be 
shown that for a sample of 𝑛 observations and in case of jointly normal distribution of the 
random variables 𝑋 and 𝑌, the random variable 

𝑡 =
𝑟ඥ(𝑛 − 2)

ඥ(1 − 𝑟ଶ)
 

 

(1.2.2) 

follows a Student’s 𝑡 distribution with 𝑛 − 2 degrees of freedom. In (1.2.2), 𝑟 is the sample 
correlation coefficient defined as  

𝑟 =
𝑠௫௬

𝑠௫𝑠௬
 

(1.2.3) 

where the numerator is the sample covariance coefficient defined as 

𝑠௫௬ =
∑ (𝑥௜ − 𝑥̅)(𝑦௜ − 𝑦ത)௡

௜ୀଵ

𝑛 − 1
 

 

and the denominator of (1.2.3) is the product of sample standard deviations of 𝑋 and 𝑌 given 
by 

𝑠௫ = ඨ
∑ (𝑥௜ − 𝑥̅)ଶ௡

௜ୀଵ

𝑛 − 1
, 𝑠௬ = ඨ

∑ (𝑦௜ − 𝑦ത)ଶ௡
௜ୀଵ

𝑛 − 1
. 

 

 

where the sample means for 𝑋 and 𝑌 are given respectively as 

𝑥̅ =
1

𝑛
෍ 𝑥௜

௡

௜ୀଵ

, 𝑦ത =
1

𝑛
෍ 𝑦௜ .

௡

௜ୀଵ

 

 

 

The decision rule for the hypothesis (1.2.1) is to 

reject 𝐻଴ if 𝑡 < −𝑡௡ିଶ,ఈ/ଶ or 𝑡 > 𝑡௡ିଶ,ఈ/ଶ. (1.2.4) 
 

Here, 𝑡௡ିଶ,ఈ is the number for which the random variable 𝑡௡ିଶ satisfies 

𝑃൫𝑡௡ିଶ > 𝑡௡ିଶ,ఈ൯ = 𝛼, 

𝛼 is named as significance level of the test. 
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Figure 1.2.1 

Figure 1.2.1 illustrates that if the 𝑡 statistics computed by (1.2.2) falls within any of the shaded 
area called the rejection region (i.e. the condition of the decision rule (1.2.4) is met), the 
hypothesis (1.2.1) is rejected. The conclusion is that 𝑋 and 𝑌 are linearly related. −𝑡ఈ/ଶ and 
𝑡ఈ/ଶ on the graph are the same as 𝑡௡ିଶ,ఈ/ଶ. 

 

Hypothesis tests for positive and negative correlations 

Similarly, the following hypothesis can be tested 

𝐻଴: 𝜌 ≥ 0 
𝐻ଵ: 𝜌 < 0 

with the decision rule 

reject 𝐻଴ if 𝑡 < −𝑡௡ିଶ,ఈ.  
 

 

Figure 1.2.2 

Or the hypothesis 

𝐻଴: 𝜌 ≤ 0 

𝐻ଵ: 𝜌 > 0 

with the decision rule 

reject 𝐻଴ if 𝑡 > −𝑡௡ିଶ,ఈ.  
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Figure 1.2.3 

The difference between the hypothesis (1.2.1) and the rest of two is that in the former there is 
half a significance level 𝛼/2 while in the latter there is 𝛼. Since the construction of a linear 
regression model makes sense when there is a linear dependence of any kind (either positive 
or negative), we concentrate only on the hypothesis (1.2.1).  

Example 1.2 

A real estate agent, Lisa Miller is concerned about the estimation of house prices. She needs a 
model to predict the price for a given house. She thinks that the most significant determinant 
of a house price is its area. So, she collects the data of houses sold. The following data in Figure 
1.2.4 represents the sample of 10 observations on the independent variable - house area, 𝑋, 
measured in square meters, and the corresponding dependent variable – house price, 𝑌, 
measured in $1000s. (e.g. the 4th record in the data implies that the house with 1700 square 
meters was sold for $302 000). Lisa decides to construct a linear model, but she realizes that 
the model will only be applicable if there actually is a linear relation between the house price 
and its area. So, the first task for her is to test the presence or absence of linear relationship 
between the house price and its area using the hypothesis (1.2.1). The following figure 
illustrates the computations 

 

Figure 1.2.4 
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The cells F1, F2 and F3 compute the correlation coefficient 𝑟, 𝑡 statistics from (1.2.2) and 
𝑡௡ିଶ,ఈ/ଶ respectively. The hypothesis is tested based on 𝛼 = 0.05 significance level (95% 
confidence level). Note that the T.INV.2T function accepts the significance level of 0.05 as an 
argument rather than 0.025 which is 𝑎/2. The reason for this is that the function itself makes 
the appropriate division. According to the decision rule (1.2.4), since 𝑡 = 4.8954 > 𝑡଼,଴.଴ଶହ =

2.306, it can be concluded that the null hypothesis in (1.2.1) is rejected.  

 

Figure 1.2.5 

So, Lisa concludes that the house price is linearly related to its area. This result was quite 
expected as long as the sample correlation coefficient is 0.87. Therefore, it makes sense to 
construct a linear regression model. 

1.3. Simple Regression 

In a simple linear regression, we model the effect of all factors other than 𝑋 (in our example, 
the house area) as part of random error term labeled as 𝜀. This random error term is a random 
variable distributed normally with mean 0 and standard deviation 𝜎. The linear model is 

𝑌 = 𝛽଴ + 𝛽ଵ𝑋 + 𝜀. 

We assume that, for predetermined values of 𝑋, there are corresponding mean values 𝑌 plus a 
random term.  
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Figure 1.3.1 

Figure 1.3.1 represents an example of the set of observations on the pairs of (𝑋, 𝑌) variables. 
The mean level 𝑌 for every 𝑋 is represented by the population equation 

𝑌 = 𝛽଴ + 𝛽ଵ𝑋. (1.3.1) 
 

The simple linear regression model provides the mathematical expectation of the value of 𝑌 
for a given value of 𝑋. Since (1.3.1) is a linear equation, the expected value of 𝑌 for a specific 
value of 𝑋 = 𝑥 can be written as 

𝐸[𝑌|𝑋 = 𝑥] = 𝛽଴ + 𝛽ଵ𝑥  
 

where 𝛽଴ is the 𝑌 intercept and 𝛽ଵ is the slope of the line. These parameter values are unknown 
and must be estimated from the sample observations in a least squares sense (examined later 
in the text). The actual observed value of 𝑌 given the value of 𝑋 is modeled as the computed 
value of 𝑌 plus an error term 𝜀 mentioned above. So, the actual observed value of 𝑌 can be 
written as 

𝑦௜ = 𝛽଴ + 𝛽ଵ𝑥௜ + 𝜀௜ 

The estimated regression model as illustrated in Figure 1.3.2 is given by the equation 

𝑦௜ = 𝑏଴ + 𝑏ଵ𝑥௜ + 𝑒௜ 
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where 𝑏଴ and 𝑏ଵ are the estimated values of the coefficients and 𝑒௜ is the difference between 
the predicted value of 𝑌 on the regression line, defined as 

𝑦ො௜ = 𝑏଴ + 𝑏ଵ𝑥௜ 
 

(1.3.2) 

and the observed value 𝑦௜. 

Generally, the fitted regression equation is 

𝑦ො = 𝑏଴ + 𝑏ଵ𝑥 
 

(1.3.2’) 

 

 

Figure 1.3.2 

The difference between 𝑦௜ and  𝑦ො௜for each value of 𝑋 is defined as the residual 

𝑒௜ = 𝑦௜ − 𝑦ො௜ = 𝑦௜ − (𝑏଴ + 𝑏ଵ𝑥௜) 

So, there is a predicted value of 𝑌 for each observed value of 𝑋. The difference between the 
observed value of 𝑌 and its predicted value is defined as the residual 𝑒.  

The population regression line is just a theoretical construct. The model has to be estimated by 
the available sample data. Suppose that there are 𝑛 pairs of observations, 
(𝑥ଵ, 𝑦ଵ), (𝑥ଶ, 𝑦ଶ), … , (𝑥௡, 𝑦௡). We need to find estimators of the unknown coefficients 𝛽଴ and 
𝛽ଵ of the population regression line. 
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In order to obtain the coefficient estimators 𝑏଴ and 𝑏ଵ for (1.3.2’) according to the least squares 
procedure, the sum of squared residuals (errors) must be minimized. Let us define the sum of 
squared errors as the following mathematical function involving the 𝑏଴ and 𝑏ଵ coefficients 

𝑆𝑆𝐸 = ෍ 𝑒௜
ଶ = ෍(𝑦௜ − 𝑦ො௜)

ଶ =

௡

௜ୀଵ

௡

௜ୀଵ

෍[𝑦௜ − (𝑏଴ + 𝑏ଵ𝑥௜)]ଶ

௡

௜ୀଵ

 

The idea behind the least squares regression is to obtain 𝑏଴ and 𝑏ଵ such that 𝑆𝑆𝐸 is minimized. 
Thus, the minimization procedure (which is beyond the scope of this book) yields  

𝑏ଵ =
∑ (𝑥௜ − 𝑥̅)(𝑦௜ − 𝑦ത)௡

௜ୀଵ

∑ (𝑥௜ − 𝑥̅)ଶ௡
௜ୀଵ

=
𝑠௫௬

𝑠௫
ଶ

 

 

(1.3.3) 

and 

𝑏଴ = 𝑦ത − 𝑏ଵ𝑥̅ (1.3.4) 
 

Any other values of 𝑏଴ and 𝑏ଵ increase the 𝑆𝑆𝐸. As a conclusion, the line given by the equation 
(1.3.2’) can be interpreted as the one passing through the sample points in a “best” possible 
way. The “best” in the sense that the total (squared) deviation from actual observations is at a 
possible minimum. No other line achieves the same. 

Assumptions of the population regression model 

There are various assumptions regarding the population regression model that are stated below 
for a convenient reference. 

1) The random variables 𝑌 are linear functions of 𝑋 plus the random error term 𝜀: 
 

𝑦௜ = 𝛽଴ + 𝛽ଵ𝑥௜ + 𝜀௜ 
 

2) The realizations of the random variable 𝑋 are the fixed numbers 𝑥௜(𝑖 = 1, … , 𝑛), which 
are independent of the error terms 𝜀௜(𝑖 = 1, … , 𝑛).  

3) The error terms 𝜀௜(𝑖 = 1, … , 𝑛) are the random variables with the mean of 0 and 
standard deviation 𝜎. This property is called homoscedasticity, or uniform variance: 
 

𝐸𝜀௜ = 0,       𝐸𝜀௜
ଶ = 𝜎ଶ,      for    𝑖 = 1, … , 𝑛 

 
4) The random error terms 𝜀௜ are linearly independent of one another, so the correlation 

between them is 0: 
𝐸ൣ𝜀௜𝜀௝൧ = 0, for all  𝑖 ≠ 𝑗 
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Example 1.3 

The scatter plot for the data in Figure 1.2.4. 

 
Figure 1.3.3 

For Lisa it is obvious that the scatter plot shows a positive linear pattern. Next, she 
computes 𝑏଴ and 𝑏ଵcoefficients based on the formulas (1.3.4) and (1.3.3) respectively. 
The results are shown in the cells B13 and B14 in Figure 1.3.4. Alternatively, these 
values could have been obtained directly from the scatter chart by right clicking on any 
of the points on the chart, selecting “Add Trendline” option and checking the “Display 
equation on chart” checkbox. 

 
Figure 1.3.4 

So the intercept coefficient 𝑏଴ = 0.1288 and the slope 𝑏ଵ = 43.713. Thus, Lisa obtains the 
ultimate linear equation (1.3.2’) to be 

𝑦ො = 43.7131 + 0.1288𝑥 (1.3.5) 
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Both of these values carry important interpretations. In the context of an example of the house 
price depended on its price, Lisa has 𝑏଴ = 43.7131 which seemingly indicates that a house 
with 0 square feet area costs $43.7131, which makes no sense. However, the value of 𝑏଴ just 
indicates that, for houses within the range of sizes observed, $43.7131 is the portion of the 
house price not explained by square meter. The value of 𝑏ଵ = 0.1288 on the other hand, tells 
us that the average value of a house increases by 0.1288($1000) = $128.8 on average, for each 
additional square meter of size. 𝑏ଵ can otherwise be regarded as the sensitivity coefficient. It 
indicates how sensitive a house price is with respect to its area. So, having the equation (1.3.5), 
Lisa can estimate the house price in terms of a given value of its area. 

1.4. Measures of Variability 

The estimated regression model developed so far explains the changes in the dependent 
variable 𝑌 that arise from changes in independent variable 𝑋. If there was an only random 
variable 𝑌 and its sample observations, then the central tendency of 𝑌 would be measured by 
the average value of 𝑌 being 𝑦ത, and the total variability of the observed values of 𝑌 about  𝑦ത 
would be measured by ∑ (𝑦௜ − 𝑦ത)ଶ.௡

௜ୀଵ  However, as long as there is an independent variable 𝑋 
whose linear function is 𝑌, it is expected that the linear equation would be closer to the 
individual values of 𝑌 and therefore, the variability of the individual values of 𝑌 about the 
linear equation would be smaller than about the average value  𝑦ത.  
 
At this point, we are ready to introduce measures of variability. The analyses of variance, 
ANOVA, for least squares regression is developed by splitting the total variability of 𝑌 into 
explained and unexplained (or error) portions. The figure 1.4.1 illustrates a single observed 
point. The deviation of the point value from the average value  𝑦ത is the total variation 𝑦௜ − 𝑦ത. 
This variation consists of two components, the explained component by the linear 
equation  𝑦ො௜ − 𝑦ത and an unexplained or random component which we call the residual 𝑒௜ =

𝑦௜ − 𝑦ො௜.  
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Figure 1.4.1 

𝑦௜ − 𝑦ത = (𝑦ො௜ − 𝑦ത) + (𝑦௜ − 𝑦ො௜) 

We defined these deviations just for a single point illustrated in the figure. If we sum such 
deviations for all observed points from the sample, we obtain 

෍(𝑦௜ − 𝑦ത)ଶ = ෍(𝑦ො௜ − 𝑦ത)ଶ + ෍(𝑦௜ − 𝑦ො௜)
ଶ

௡

௜ୀଵ

௡

௜ୀଵ

௡

௜ୀଵ

 
(1.4.1) 

 
This equation can be expressed as  
 

𝑆𝑆𝑇 = 𝑆𝑆𝑅 + 𝑆𝑆𝐸 
 
Here, we see that the total variability - 𝑆𝑆𝑇 of the sample observed points about the mean can 
be split into an explained portion – 𝑆𝑆𝑅, representing the variability explained by the slope 
coefficient 𝑏ଵ, and an unexplained portion - 𝑆𝑆𝐸. The source of the latter is the uncertainty 
that arises from factors other than the explanatory variable 𝑋. The left side of the equation is 
the sum of squares total 

𝑆𝑆𝑇 = ෍(𝑦௜ − 𝑦ത)ଶ

௡

௜ୀଵ

 
(1.4.2) 
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The portion of variability explained by the regression model is the sum of squares regression 
and is given by 

𝑆𝑆𝑅 = ෍(𝑦ො௜ − 𝑦ത)ଶ = 𝑏ଵ
ଶ ෍(𝑥௜ − 𝑥̅)ଶ

௡

௜ୀଵ

௡

௜ୀଵ

 
(1.4.3) 

 

From here it is clear that the portion of variability explained by the regression depends solely 
on the value of 𝑏ଵ coefficient and squared deviation in 𝑋. The deviations about the regression 
line, or the residual value, which computes the unexplained portion of variability or the error 
sum of squares can be defined as 

𝑆𝑆𝐸 = ෍൫𝑦௜ − (𝑏଴ + 𝑏ଵ𝑥௜)൯
ଶ

= ෍(𝑦௜ − 𝑦ො௜)
ଶ = ෍ 𝑒௜

ଶ

௡

௜ୀଵ

௡

௜ୀଵ

௡

௜ୀଵ

 

 

(1.4.4) 

  
From Figure 1.4.1, it is clear that the regression line is closer to the data point as the value 
of  𝑦ො௜ − 𝑦ത increases and hence, makes the value of 𝑦௜ − 𝑦ො௜ shrink. Similarly, the fit of the 
regression equation to the observed sample data improves if the value of 𝑆𝑆𝑅 increases and 
correspondingly, the value of 𝑆𝑆𝐸 decreases.  

 

Example 1.4 

In the previous section, Lisa Miller got the model predicting a house price for a given value of 
its area. So, she can use the model for the estimation of house prices. However, her colleague, 
Mary Wilson suggests that even though she has the model constructed, it would be better to 
check the reliability of the predictions made by the model. So, she now wants to determine 
how accurate her predictions are. She knows that changes in house area should cause changes 
in house price. She decides to measure the variability in house price by 𝑆𝑆𝐸, 𝑆𝑆𝑅 and 𝑆𝑆𝑇. 
Once having the values of 𝑏଴ and 𝑏ଵ in place, she proceeds to compute the values of 𝑆𝑆𝑅, 𝑆𝑆𝐸 
and 𝑆𝑆𝑇.  
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Figure 1.4.2 

 
First, the estimated values of 𝑌 for each observed value of 𝑋 are computed in the D column 
(by the function “=$B$13+$B$14*B2” in the cell D2). The column E contains elements of the 
𝑆𝑆𝑅 (computed by the function “=(D2-AVERAGE($C$2:$C$11))^2” in the cell E2) which 
when summed, gives us the value of 𝑆𝑆𝑅 computed in the cell E13. On the other hand, in order 
to compute the value of 𝑆𝑆𝐸, as long as there are the values of 𝑌 and  𝑦ො listed in the columns 
C and D, the function 𝑆𝑈𝑀𝑋𝑀𝑌2 can be used which performs the summation for the squared 
differences of the elements of the first and second arrays passed as arguments. The values of 
these measures are not self - explanatory at this point. So, Lisa’s concern about the accuracy of 
predictions made by the model still remains unaddressed. However, having the values of 
𝑆𝑆𝑅, 𝑆𝑆𝐸 and 𝑆𝑆𝑇 computed, the next step is to measure the explanatory power of the 
regression equation using these measures of variability which helps determine the precision of 
the model. 
 

1.5. The Explanatory Power of a Linear Regression Equation 

In the previous section, based on the Figure 1.4.1, we claimed that greater the value of 𝑆𝑆𝑅, 
better the fit of the regression equation to the sample data. As long as 𝑆𝑆𝑇 = 𝑆𝑆𝑅 + 𝑆𝑆𝐸, 
greater value of 𝑆𝑆𝑅 implies less value of 𝑆𝑆𝐸 in 𝑆𝑆𝑇 and thus, the explained portion of 
variation occupies part of unexplained portion of variation. The proportion of explained part 
of variation into the total variation in the dependent variable is captured by the coefficient of 
determination, 𝑅ଶ defined as follows 
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𝑅ଶ =
𝑆𝑆𝑅

𝑆𝑆𝑇
= 1 −

𝑆𝑆𝐸

𝑆𝑆𝑇
 

 

(1.5.1) 

Closer this value is to one, greater the explained portion of variation in the dependent variable 
and thus, better the estimation accuracy. It can be shown that the coefficient of determination 
coincides the square of the correlation coefficient. 

𝑅ଶ = 𝑟ଶ (1.5.2) 

This equation has geometric interpretation. 𝑅ଶ is close to one when the absolute value of the 
correlation coefficient is close to one. This happens when there is a strong linear relationship 
between two random variables and therefore, the regression line has a high explanatory power. 
The following Figures illustrate several cases. 

Case 1: 𝑅ଶ = 1 

  

Figure 1.5.1 

The coefficient of determination equals one if and only if 𝑆𝑆𝑅 = 𝑆𝑆𝑇, leaving no space for 
𝑆𝑆𝐸. In order for 𝑆𝑆𝐸 to be zero, there must not be a deviation from the regression line to any 
of the observed point. Thus, all points lie on the regression line. This implies perfect 
correlation. 

Case 2: 0 < 𝑅ଶ < 1 

  

Figure 1.5.2 
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Figure 1.5.2 shows positive and negative correlation coefficients. In this case the 𝑅ଶ is not 
equal to one, meaning there are some random components introducing unexplained portion 
of variation in the value of 𝑌 and therefore, there are some deviations from the regression line 
to the sample points. 

Case 3: 𝑅ଶ = 0 

 

Figure 1.5.3 

Correlation coefficient being zero implies the absence of linear dependence between two 
random variables. Similarly, the coefficient of determination being zero implies the absence of 
explained portion of variation in the value of the dependent variable. So, 𝑆𝑆𝑅 = 0 and  𝑆𝑆𝐸 =

𝑆𝑆𝑇, meaning the random, unexplained component occupies the sum of squares total 
completely. 

 

Example 1.5 

In the previous example, Lisa computed the values of 𝑆𝑆𝑅, 𝑆𝑆𝐸 and 𝑆𝑆𝑇. However, she could 
not draw any conclusion solely based on these numbers. Now she computes the value of 𝑅ଶ 
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Figure 1.5.4 

The cell D16 contains the value of 𝑅ଶ coefficient which is nearly 75%. In the context of the 
house prices, Lisa interprets this coefficient value as the percent of total variability in house 
price that is explained by the house area. So, she concludes that 75% of variation in the house 
price has been explained by the house area making it a significant factor determining the house 
price. There is still 25% unexplained. So, Lisa thinks that this is not enough to make an accurate 
prediction of a house price given its area. Concerned with precision of the prediction, she starts 
to think of other factors that might affect the house price and increase the coefficient of 
determination and hence, the prediction accuracy. These additional factors will be examined 
in the section of multiple regression. 

1.6. Standard Error of the Estimate and Variance Estimators of the Regression 
Coefficients 

In section 1.4, the sum of squared errors was interpreted as the unexplained portion of 
variation in the dependent variable 𝑌 around the mean. It can also be used to measure the 
variation of observed 𝑌 values from the regression line. 

𝑠௘
ଶ =

∑ 𝑒௜
ଶ௡

௜ୀଵ

𝑛 − 2
=

𝑆𝑆𝐸

𝑛 − 2
 

 

(1.6.1) 
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The square root from (1.6.1) is the standard error of the estimate 𝑠௘ = ඥ𝑠௘
ଶ and measures the 

average dispersion of observed values of 𝑌 about the regression line. This effect is illustrated 
in the following figure 

 

Figure 1.6.1 

Small 𝑠௘ implies the values of 𝑌 from the sample observations closely scattered around the 
regression line, while the large value of 𝑠௘ implies the opposite. Note that the value of 𝑠௘ is not 
self - explanatory by itself. Its value cannot tell us whether it is small or large. The magnitude 
of 𝑠௘ should always be judged relative to the size of the 𝑌 values in the sample.  

In section 1.3, 𝑏ଵ was defined to be an unbiased estimator for 𝛽ଵ. The variance for this slope 
coefficient of the regression line is estimated by 

𝑠௕భ

ଶ =
𝑠௘

ଶ

∑ (𝑥௜ − 𝑥̅)ଶ௡
௜ୀଵ

=
𝑠௘

ଶ

(𝑛 − 1)𝑠௫
ଶ
 

(1.6.2) 

while the population variance is 

𝜎௕భ

ଶ =
𝜎ଶ

∑ (𝑥௜ − 𝑥̅)ଶ௡
௜ୀଵ

=
𝜎ଶ

(𝑛 − 1)𝑠௫
ଶ

. 

The square root of (1.6.2), 𝑠௕భ
= ට𝑠௕భ

ଶ  is a measure of variation in the slope of regression lines 

from different possible samples. Smaller value of 𝑠௕భ
 implies a more precise estimate of the 𝛽ଵ 

coefficient by 𝑏ଵ and vice versa. This fact is illustrated in the following figure 
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Figure 1.6.2 

Similarly, the variance estimator for the regression intercept coefficient 𝑏଴ can be derived as 

sୠబ

ଶ = ቆ
1

𝑛
+

𝑥̅ଶ

(𝑛 − 1)𝑠௫
ଶ

ቇ 𝑠௘
ଶ 

(1.6.3) 

Example 1.6 

Lisa Miller computes the standard error of the estimate, the sample variance estimator and the 
variance estimator for the slope and intercept coefficients as follows 

 

Figure 1.6.3 
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The cells E18 and E19 contain the values of 𝑠௘

ଶ and 𝑠௘ respectively. As noted above, the value 
of 𝑠௘ itself cannot tell whether it is large or small. Lisa interprets the value of 𝑠௘ (which is 
35.81) as the average dispersion from the regression line of the sample observations and 
concludes that it is relatively small compared to the values of 𝑌. So, the observed values are 
scattered close around the regression line. The cell B18 computes the value of 𝑠௕బ

 according to 
(1.6.3) contains the formula 
 “=SQRT((1/A11+AVERAGE(B2:B11)^2/(A10*VAR.S(B2:B11)))*E18)” and the cell B19 
computes the value of 𝑠௕భ

 based on (1.6.2) by the formula “SQRT(E18/((COUNT(C2:C11)-
1)*VAR.S(B2:B11)))”.  

1.7. Hypothesis for the Regression Slope Coefficient 

In section 1.3, the hypothesis for the population correlation coefficient was tested. The null 
hypothesis was formulated as 𝐻଴: 𝜌 = 0 against the alternative 𝐻ଵ: 𝜌 ≠ 0. Rejection of the null 
hypothesis implies that the two random variables are linearly related. Existence of the linear 
relationship between two random variables can similarly be tested by the following hypothesis 

𝐻଴: 𝛽ଵ = 0 (𝑛𝑜 𝑙𝑖𝑛𝑒𝑎𝑟 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝) 
𝐻ଵ: 𝛽ଵ ≠ 0        (𝑙𝑖𝑛𝑒𝑎𝑟 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝) 

 

(1.7.1) 

Under fairly general conditions, it can be concluded that the random variable 

𝑡 =
𝑏ଵ − 𝛽ଵ

𝑠௕భ

=
𝑏ଵ − 0

𝑠௕భ

=
𝑏ଵ

𝑠௕భ

 (1.7.2) 

 

follows the Student’s 𝑡 distribution with 𝑛 − 2 degrees of freedom. So, the decision rule for the 
hypothesis is to 

reject 𝐻଴ if 𝑡 ≥ 𝑡௡ିଶ,ఈ/ଶ      or      𝑡 ≤ −𝑡௡ିଶ,ఈ/ଶ 
 

(1.7.3) 

In (1.7.2), 𝛽ଵ is taken to be 0 since in the hypothesis (1.7.1), its value is tested against 0. 
Similarly, the hypothesis can be tested for any other value of 𝛽ଵ. In addition, there can be the 
hypothesis involving inequalities. Taking the specific value of the slope coefficient 𝛽ଵ

∗ and the 
significance level 𝛼, all cases are summarized below for a convenient reference: 

Case 1: To test the null hypothesis 

𝐻଴: 𝛽ଵ = 𝛽ଵ
∗ 𝑜𝑟 𝐻଴: 𝛽ଵ ≤ 𝛽ଵ

∗ 

against the alternative 
𝐻ଵ: 𝛽ଵ > 𝛽ଵ

∗ 
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the decision rule is to 
 

𝑟𝑒𝑗𝑒𝑐𝑡 𝐻଴ 𝑖𝑓 𝑡 =
𝑏ଵ − 𝛽ଵ

∗

𝑠௕భ

≥ 𝑡௡ିଶ,ఈ 

Case 2: To test the null hypothesis 

𝐻଴: 𝛽ଵ = 𝛽ଵ
∗ 𝑜𝑟 𝐻଴: 𝛽ଵ ≥ 𝛽ଵ

∗ 

 against the alternative 

𝐻ଵ: 𝛽ଵ < 𝛽ଵ
∗ 

the decision rule is to 

𝑟𝑒𝑗𝑒𝑐𝑡 𝐻଴ 𝑖𝑓 𝑡 =
𝑏ଵ − 𝛽ଵ

∗

𝑠௕భ

≤ −𝑡௡ିଶ,ఈ 

Case 3: To test the null hypothesis 

𝐻଴: 𝛽ଵ = 𝛽ଵ
∗ 

 against the alternative 

𝐻ଵ: 𝛽ଵ ≠ 𝛽ଵ
∗ 

 the decision rule is to 

𝑟𝑒𝑗𝑒𝑐𝑡 𝐻଴ 𝑖𝑓 𝑡 =
𝑏ଵ − 𝛽ଵ

∗

𝑠௕భ

> 𝑡௡ିଶ,ఈ/ଶ 𝑜𝑟 𝑡 =
𝑏ଵ − 𝛽ଵ

∗

𝑠௕భ

≤ −𝑡௡ିଶ,ఈ/ଶ 

The last one is the generalized version of (1.7.1) with 𝛽ଵ
∗ being any number (not necessarily 0).  

Remark: At this point, there are two hypotheses at our disposal testing the linear dependence 
of two random variables. So, there is no difference in which one is used when it comes to 
simple regression with a single explanatory variable. However, as we will see later, in multiple 
regression, the hypothesis (1.7.1) can be tested for any independent variable separately. Hence, 
it answers the question whether the dependent variable 𝑌 is in linear relation with that specific 
independent variable. 

In simple regression, there is another way of testing the linear dependence using the 𝐹 test. 
The hypothesis is similar to (1.7.1) 

𝐻଴: 𝛽ଵ = 0 (𝑛𝑜 𝑙𝑖𝑛𝑒𝑎𝑟 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝) 
𝐻ଵ: 𝛽ଵ ≠ 0        (𝑙𝑖𝑛𝑒𝑎𝑟 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝) 

 

 

It can be shown that  
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𝐹 =
𝑀𝑆𝑅

𝑀𝑆𝐸
 (1.7.4) 

follows and an 𝐹 distribution with the numerator degrees of freedom of 1 and the denominator 
degrees of freedom 𝑛 − 2. (Note that the 𝐹 distribution is characterized by two degrees of 
freedom). In (1.7.4) mean squared regression is defined to be  

𝑀𝑆𝑅 =
𝑆𝑆𝑅

𝑘
 (1.7.5) 

where 𝑘 is the number of explanatory variables in the regression model. Since the simple 
regression has only one explanatory variable (𝑘 = 1), the value of 𝑀𝑆𝑅 = 𝑆𝑆𝑅. On the other 
hand, mean squared error is defined to be 

𝑀𝑆𝐸 =
𝑆𝑆𝐸

𝑛 − 𝑘 − 1
=

𝑆𝑆𝐸

𝑛 − 2
= 𝑠௘

ଶ 

 

(1.7.6) 

So, in simple regression (1.7.4) can be rewritten as 

𝐹 =
𝑆𝑆𝑅

𝑠௘
ଶ

 

The decision rule for the hypothesis is to 

reject 𝐻଴ if 𝐹 ≥ 𝐹ଵ,௡ିଶ,ఈ (1.7.7) 
 

where 𝐹ଵ,௡ିଶ,ఈ is the critical value corresponding to 𝛼 significance level satisfying 

𝑃൫𝐹ଵ,௡ିଶ > 𝐹ଵ,௡ିଶ,ఈ൯ = 𝛼 

 

Example 1.7 

Similarly to the Example 1.2, where the hypothesis was tested for the population correlation 
coefficient, here the hypothesis (1.7.1) is tested. As long as both of the hypothesis carry the 
same interpretation, in particular, rejection of the null hypothesis means the existence of linear 
relation between the random variables 𝑋 and 𝑌, it is quite expected that both hypotheses give 
the same answer.  



22     T. Toronjadze (ed.) 

 

 

Figure 1.7.1 

The hypothesis (1.7.1) is tested by the significance level of 𝛼 = 0.05. The cells E21 and E22 
contain the values of the t statistics from (1.7.2) and 𝑡଼,଴.଴ଶହ. Note that the value of 𝑡 statistics 
exactly matches the one computed for the hypothesis (1.2.1). It can be shown that the value 
of 𝑡 statistics computed by (1.2.2) and (1.7.2) are equal. This computation was illustrated in 
Figure 1.2.4, cell F2. 

The cell H1 contains the value of the 𝐹 statistics and the cell H2 contains the critical value 
𝐹ଵ,଼,଴.଴ହ. Note that unlike the T.INV.2T function in the cell E22, the function F.INV in the cell 
H2 receives 1 − 𝛼 = 0.95 as an argument. The rest of the two arguments are the numerator 
degrees of freedom (equal to 1) and the denominator degrees of freedom (equal to 8). 

1.8. Hypothesis for the Regression Slope Coefficient Tested by p-value 

As an alternative to the techniques examined in Section 1.7, all of the hypotheses can be tested 
by comparing probabilities rather than comparing the corresponding statistics (𝑡 or 𝐹) to the 
critical values (𝑡௡ିଶ,ఈ/ଶ or 𝐹ଵ,௡ିଶ,ఈ). 

Consider the hypothesis (1.7.1) which is restated below 
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𝐻଴: 𝛽ଵ = 0 (𝑛𝑜 𝑙𝑖𝑛𝑒𝑎𝑟 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝) 
𝐻ଵ: 𝛽ଵ ≠ 0        (𝑙𝑖𝑛𝑒𝑎𝑟 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝) 

 

 

The 𝑡 statistics defined by (1.7.2) is 

𝑡 =
𝑏ଵ − 𝛽ଵ

𝑠௕భ

=
𝑏ଵ − 0

𝑠௕భ

=
𝑏ଵ

𝑠௕భ

 

According to the rejection rule (1.7.3), this value must be compared to the critical value 
𝑡௡ିଶ,ఈ/ଶ and decide to reject 𝐻଴ if |𝑡| > |𝑡௡ିଶ, 𝛼/2|. This fact can be illustrated as follows 

 

Figure 1.8.1 

In the figure above, 𝑡 > 𝑡௡ିଶ,ఈ/ଶ. Thus, the 𝑡 value falls within one of the rejection regions and 
the null hypothesis 𝐻଴ must be rejected. In this case we have 𝑃൫𝑡௡ିଶ > 𝑡௡ିଶ,ఈ/ଶ൯ = 𝛼/2 and 
𝑃(𝑡௡ିଶ > 𝑡) < 𝛼/2. So, the area under the density function from 𝑡 to the right is smaller than 
the shaded area which is 𝛼/2. So, instead of comparing the values of 𝑡 and 𝑡௡ିଶ,ఈ/ଶ, we can 
compare the probabilities (areas under the curve of the probability density function). 
Therefore, the decision rule (1.7.3) can be translated as 

reject 𝐻଴ if 𝑃(𝑡௡ିଶ > 𝑡) < 𝛼/2.   

More formally, (for positive 𝑡) we can define probability value (p-value) as 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 2𝑃(𝑡௡ିଶ > 𝑡)  

 

(1.8.1) 

and this value needs to be compared with the significance level 𝛼 and we have the final version 
of the decision rule: 

reject 𝐻଴ if 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 𝛼  
 

(1.8.2) 
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and this is equivalent to (1.7.3). Note that in the discussion above, the assumption above is 
the positivity of value of 𝑡. 

On the other hand, if 𝑡 is positive and 𝑡 < 𝑡௡ିଶ,ఈ/ଶ, then the area to the right of 𝑡 would be 
greater than the area to the right of 𝑡௡ିଶ,ఈ/ଶ and according to (1.7.3) the hypothesis 𝐻଴ would 
not be rejected. This fact is illustrated on the Figure 1.8.2 below 

 

Figure 1.8.2 

In this case (1.8.2) does not hold and 𝐻଴ is not rejected. The convenience of using p-values 
rather than comparison of 𝑡 values is clear when using a statistical computer package (as shown 
in Section 1.10) where the p-value for a given hypothesis is generated by a computer. What 
remains is to simply compare this value to the significance level 𝛼. 

In section 1.7, the same hypothesis was tested with the 𝐹 test. The coefficient 𝐹 computed by 
(1.7.4) is compared with the critical value 𝐹ଵ,௡ିଶ,ఈ and the decision rule (1.7.7) states to  

reject 𝐻଴ if 𝐹 ≥ 𝐹ଵ,௡ିଶ,ఈ 

which is equivalent to  

reject 𝐻଴ if 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑃൫𝐹1,𝑛−2 > 𝐹൯ < 𝑃൫𝐹1,𝑛−2 > 𝐹ଵ,௡ିଶ,ఈ൯ = 𝛼 

 

(1.8.3) 

The following figure illustrates the condition of (1.8.3) met 
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Figure 1.8.3 

On the other hand, if the 𝐹 statistics falls within the non-rejection region (i.e. 𝐹 < 𝐹ଵ,௡ିଶ,ఈ), 
this implies that 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑃൫𝐹ଵ,௡ିଶ > 𝐹൯ > 𝑃൫𝐹ଵ,௡ିଶ > 𝐹1,𝑛−2,𝛼൯ = 𝛼 and is illustrated below 

 

Figure 1.8.4 

Similarly to the hypothesis test related to Student’s 𝑡 distribution, the p-value can directly be 
compared to the significance level 𝛼. 

Example 1.8 

The figure below illustrates the computations of p-values in both ways. 
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Figure 1.8.5 

The p-value (1.8.1) is computed in the cell E23 by the function T.DIST.2T(E21,A9). This 
function receives the value of 𝑡 and the degrees of freedom as arguments and returns the 
probability in (1.8.1). Similarly, the p-value (1.8.3) is computed in the cell H3 by the function 
F.DIST.RT(S16,1,8). This function receives the 𝐹 value, first degrees of freedom and second 
degrees of freedom as arguments and returns the probability in (1.8.3). As long as there is only 
one explanatory variable in the regression model, these two values are the same. 

1.9. Confidence Intervals 

In Section 1.3, we defined 𝑏଴ and 𝑏ଵ to be unbiased estimators of 𝛽଴ and 𝛽ଵ respectively. So, 
the most likely values of the population intercept and slope coefficients are their sample 
estimates. However, it would be useful to know by high probability the interval within which 
the actual population intercept and slope coefficients will fall. The confidence intervals for 𝛽଴ 
and 𝛽ଵ corresponding to a given confidence level 1 − 𝛼 are 

𝑏଴ − 𝑡௡ିଶ,ఈ/ଶ𝑠௕బ
< 𝛽଴ < 𝑏଴ + 𝑡௡ିଶ,ఈ/ଶ𝑠௕బ

 (1.9.1) 
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𝑏ଵ − 𝑡௡ିଶ,ఈ/ଶ𝑠௕భ

< 𝛽ଵ < 𝑏ଵ + 𝑡௡ିଶ,ఈ/ଶ𝑠௕భ
 (1.9.2) 

 

Once having this information, one can make predictions or forecasts for the dependent 
variable for a given value of the independent variable. For a specific value of the independent 
variable 𝑥௡ାଵ, the corresponding forecast value of the dependent variable is 

𝑦௡ାଵ = 𝛽଴ + 𝛽ଵ𝑥௡ାଵ + 𝜀௡ାଵ 

which has an expectation of  

𝐸[𝑦௡ାଵ|𝑥௡ାଵ] = 𝛽଴ + 𝛽ଵ𝑥௡ାଵ 

Suppose that the population regression model and the standard assumptions examined in 
Section 1.3 hold. Let 𝑏଴ and 𝑏ଵ be the least squares estimates of 𝛽଴ and 𝛽ଵ, based on the sample 
observations (𝑥ଵ, 𝑦ଵ), (𝑥ଶ, 𝑦ଶ), … , (𝑥௡, 𝑦௡). Then it can be shown that the following are 
confidence intervals corresponding to 100(1 − 𝛼)% confidence level. 

1. For the forecast of the actual value resulting for 𝑌௡ାଵ, the prediction interval is 
 

𝑦ො௡ାଵ ± 𝑡௡ିଶ,ఈ/ଶ𝑠௘ඨ1 +
1

𝑛
+

(𝑥௡ାଵ − 𝑥̅)ଶ

∑ (𝑥௜ − 𝑥̅)ଶ௡
௜ୀଵ

 
(1.9.3) 

 

So, the most likely value of the dependent variable for a specific value of the independent 
variable 𝑥௡ାଵ is  𝑦ො௡ାଵ. However, the actual value of the dependent variable will fall within the 
interval of (1.9.3) by 100(1 − 𝛼)% confidence level. 

2. For the forecast of the conditional expectation 𝐸[𝑌௡ାଵ|𝑋௡ାଵ], the confidence interval is 
 

𝑦ො௡ାଵ ± 𝑡௡ିଶ,ఈ/ଶ𝑠௘ඨ
1

𝑛
+

(𝑥௡ାଵ − 𝑥̅)ଶ

∑ (𝑥௜ − 𝑥̅)ଶ௡
௜ୀଵ

 
(1.9.4) 

 

Here the confidence interval is constructed for the average value of the dependent variable for 
a fixed value of the independent variable 𝑥௡ାଵ. The average value of 𝑌 will fall within the 
interval given by (1.9.4) by 100(1 − 𝛼)% confidence level. 

All of the variables appearing in formulas (1.9.3) and (1.9.4) are examined above in the text. 

 



28     T. Toronjadze (ed.) 

 

Example 1.9 

Lisa Miller continues gathering information about the model and constructs the confidence 
intervals for 𝛽଴ and 𝛽ଵ. The results are shown in Figure 1.9.1 

 

Figure 1.9.1 

The cell G6 and G7 contain the lower confidence levels (LCL) and the cells I6 and I7 contain 
the upper confidence levels (UCL) for 𝛽଴ and 𝛽ଵ respectively. Lisa interprets these levels as the 
minimum and maximum values 𝛽଴ and 𝛽ଵ can obtain in 100(1 − 𝛼)% of times. When it comes 
to the house example where the house price is explained by the area as an independent 
variable, the lower confidence level of -66.8573 (a negative value) makes no sense. In Section 
1.3, 𝑏଴ was defined to be the portion of the value of 𝑌 unexplained by a given 𝑋 variable. 
Similarly, the negative value for the house price (which makes no sense) can be regarded as 
the value that arises from insufficiency of explanatory power of the 𝑋 variable. 

The confidence interval for these coefficients provide useful information about the reliability 
of the model. Now Lisa is interested to predict the price of a house with 1550 square meters of 
area.  
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Figure 1.9.2 

So, for the given area of 𝑥ଵଵ = 1550 square meters, Lisa computes the predicted value of price 
to be $243.28 in the cell K6 containing the formula “=B13+B14*J6”.  

Since the formulas (1.9.3) and (1.9.4) contain ∑ (𝑥௜ − 𝑥̅)ଶ௡
௜ୀଵ , it is more convenient to have it 

computed separately. Individual terms (𝑥௜ − 𝑥̅)ଶ are computed for 𝑖 = 1, … 10 from E2 through 
E11 by the formula “=(B2-AVERAGE($B$2:$B$11))^2” contained in E2. Since this cell formula 
is extended through E11, we need to freeze the values of the B column, thus there is 
$B$2:$B$11 in the function AVERAGE in E2. The sum of the values in E column is the desired 
quantity contained in K2. Since the desired value for which we are computing the confidence 
intervals is 𝑥௡ାଵ = xଵଵ = 1550, it is given in J6. K6 contains the predicted value  𝑦ො௡ାଵ 
according to (1.3.2). The cells J9 and L9 compute the lower and upper confidence limits (1.8.3) 
and the cells J10 and L10 compute the same for (1.8.4). Based on the results, Lisa concludes 
that the house price with an area of 1550 square meters, will fall within the interval of $155 
633 to $330 929 (by 95% confidence level) while the average house price of houses with 1550 
square meters of area will fall within the interval of $213 914 to $272 649. 
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1.10. Regression Table  

Most of the computations in the preceding sections can be summarized by the regression table. 
This section aims to analyze the table and make references to the computations above. The 
regression table can be obtained in Excel using the Data tab, Data Analysis, Regression. The 
resulting window is 

 

Figure 1.10.1 
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After filling the inputs as shown above, the resulting regression table is 

 

Figure 1.10.2 

The regression table is divided into three sub tables. The topmost table, Regression Statistics 
provides general information about the regression. The middle table, ANOVA (Analysis of 
Variance) contains the information about the measures of variability of the fitted regression 
model. The last table contains information about the regression coefficients. 

 

The table below summarizes the computations from the preceding sections 

# Cell Description Equation 
1. B5 𝑅ଶ (1.5.1) 
2. B7 𝑠௘ square root from (1.6.1) 
3. C12 𝑆𝑆𝑅 (1.4.3) 
4. C13 𝑆𝑆𝐸 (1.4.4) 
5. C14 𝑆𝑆𝑇 (1.4.2) 
6. D12 𝑀𝑆𝑅 (1.7.5) 
7. D13 𝑀𝑆𝐸 (1.7.6) 
8. E12 𝐹 (1.7.4) 
9. F12 𝑝 − 𝑣𝑎𝑙𝑢𝑒 (𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 𝐹) (1.8.3) 

10. B17 𝑏଴ (1.3.4) 
11. B18 𝑏ଵ (1.3.3) 
12. C17 𝑠௕బ

 square root from (1.6.3) 
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13. C18 𝑠௕భ
 square root from (1.6.2) 

14. D18 𝑡 (1.7.2) 
15. E18 𝑝 − 𝑣𝑎𝑙𝑢𝑒 (1.8.1) 
16. F17 𝐿𝐶𝐿 (𝛽଴) (1.9.1) 
17. G17 𝑈𝐶𝐿 (𝛽଴) (1.9.1) 
18. F18 𝐿𝐶𝐿 (𝛽ଵ) (1.9.2) 
19. G18 𝑈𝐶𝐿 (𝛽ଵ) (1.9.2) 

 

Table 1.10 

 

 

 

 

 

 

 

 

 

 

 

 

  



Decision Modelling 33 

 

Chapter 2.  Multiple Regression Analyses 

2.1. Introduction 

In Chapter 1, we developed a simple regression model as a vehicle for estimating dependent 
variable 𝑌 (e.g. house price) in terms of independent variable 𝑋 (e.g. house area). In this 
chapter we generalize the topic to multiple regression model. In many situations, more than 
one variable jointly affects the dependent variable.  

 House price is determined by its area, location, availability of a parking space around 
and possibly the age of a house.  

 Demand for a certain product is determined by its price and brand name. 
 Concentration of a certain drug in the bloodstream may depend on time passed after 

injection and age of a patient. 

Multiple regression analyzes helps predict the value of 𝑌 in terms of several independent 
variables 𝑋. Most of the topics included in this chapter are the generalizations of what has 
already been examined in Chapter 1. As an additional topic, we include the dummy variables 
enabling us to incorporate qualitative variables into the model. 

2.2. Multiple Regression 

The population regression model is given by 

𝑌 = 𝛽଴ + 𝛽ଵ𝑋ଵ + 𝛽ଶ𝑋ଶ + ⋯ + 𝛽௞𝑋௞ + 𝜀 
 

(2.2.1) 

where 𝑌 is the dependent variable and 𝑋௝-s for 𝑗 = 1, … , 𝑘 are the independent explanatory 
variables. Similar to the simple regression model, 𝛽଴ is the intercept coefficient, 𝛽௝-s are the 
slope coefficients for their corresponding 𝑋௝-s and 𝜀 is a normal random variable with mean 0 
and variance 𝜎ଶ. 𝑌 and 𝑋௝-s are random variables whose realizations are given by (2.2.2) below 

𝑦௜ = 𝛽଴ + 𝛽ଵ𝑥ଵ௜ + 𝛽ଶ𝑥ଶ௜ + ⋯ + 𝛽௞𝑥௞௜ + 𝜀௜ 
 

(2.2.2) 

which states that the observed value 𝑦௜ is a function of fixed values {𝑥ଵ௜ , 𝑥ଶ௜ , … , 𝑥௞௜}. As seen 
in Chapter 1, there are several standard assumptions about this model: 

1) The terms 𝑥௝௜ are (fixed numbers) the realizations of random variables 𝑋௝ and are 
independent of the error terms 𝜀௜. 

2) Mathematical expectation of the random variable 𝑌 is a linear function of the 
independent variables 𝑋௝. 

3) The error terms are normally distributed with mean 0 and variance 𝜎ଶ: 
𝐸𝜀௜ = 0,         𝐸𝜀௜

ଶ = 𝜎ଶ           𝑓𝑜𝑟  𝑖 = 1, … , 𝑛 
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4) The random terms 𝜀௜ are independent of one another (uncorrelated) 

𝐸ൣ𝜀௜𝜀௝൧ = 0    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ≠ 𝑗 

The corresponding sample estimated model for (2.2.2) is 

𝑦௜ = 𝑏଴ + 𝑏ଵ𝑥ଵ௜ + 𝑏ଶ𝑥ଶ௜ + ⋯ + 𝑏௞𝑥௞௜ + 𝑒௜ 
 

(2.2.3) 

where 𝑒௜ is the residual measuring the difference between the actually observed value of 𝑌 and 
its estimated value. The coefficients 𝑏௝ are to be found using the least squares procedure. The 
least squares estimates of the coefficients 𝛽଴, 𝛽ଵ, … , 𝛽௞ in (2.2.1) are the values 𝑏଴, 𝑏ଵ, … , 𝑏௞ for 
which the sum of squared errors defined as  

𝑆𝑆𝐸 = ෍ 𝑒௜
ଶ =

௡

௜ୀଵ

෍(𝑦௜ − 𝑦ො௜)
ଶ = ෍(𝑦௜ − 𝑏଴ − 𝑏ଵ𝑥ଵ௜ − 𝑏ଶ𝑥ଶ௜ − ⋯ − 𝑏௞𝑥௞௜)

ଶ

௡

௜ୀଵ

௡

௜ୀଵ

 

is minimized. The resulting equation is  

𝑦ො௜ = 𝑏଴ + 𝑏ଵ𝑥ଵ௜ + 𝑏ଶ𝑥ଶ௜ + ⋯ + 𝑏௞𝑥௞௜ 
 

(2.2.4) 

For simplicity we consider a model with only two predictor variables. Then (2.2.4) is reduced 
to 

𝑦ො௜ = 𝑏଴ + 𝑏ଵ𝑥ଵ௜ + 𝑏ଶ𝑥ଶ௜ 
 

(2.2.5) 

This can visually be illustrated as follows 

 

Figure 2.2.1 
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Unlike the Figure 1.3.2, where  𝑦ො was a function of a single variable whose graph was a line, 
here  𝑦ො is a function of two variables whose graph is a surface in three dimensions. It can be 
referred as the prediction surface. Note that depending on the slope coefficients 𝑏ଵ and 𝑏ଶ, the 
surface is falling or rising with respect to the corresponding variable. In the Figure 2.2.1, 𝑏ଵ <

0 and  𝑦ො is a decreasing function of 𝑥ଵ. On the other hand, 𝑏ଶ > 0 making  𝑦ො an increasing 
function of 𝑥ଶ. 

Minimization procedure for 𝑆𝑆𝐸 (which is not examined in this book) yields the following 
results for the coefficients 

𝑏ଵ =
𝑠௬ ቀ𝑟௫భ௬ − 𝑟௫భ௫మ

𝑟௫మ೤
ቁ

𝑠௫భ
(1 − 𝑟௫భ௫మ

ଶ )
 

 

(2.2.6) 

 

𝑏ଶ =
𝑠௬ ቀ𝑟௫మ௬ − 𝑟௫భ௫మ

𝑟௫భ೤
ቁ

𝑠௫మ
(1 − 𝑟௫భ௫మ

ଶ )
 

(2.2.7) 

 

𝑏଴ = 𝑦ത − 𝑏ଵ 𝑥̅ଵ − 𝑏ଶ 𝑥̅ଶ 
 

(2.2.8) 

where 
𝑠௬ is the sample standard deviation of 𝑌, 
𝑠௫భ

 is the sample standard deviation of  𝑋ଵ, 
𝑠௫మ

 is the sample standard deviation of  𝑋ଶ, 
𝑟௫భ௬ is the sample correlation coefficient between 𝑋ଵ and 𝑌, 
𝑟௫మ௬ is the sample correlation coefficient between 𝑋ଶ and 𝑌, 
𝑟௫భ௫మ

 is the sample correlation coefficient between 𝑋ଵ and 𝑋ଶ, 
𝑦ത is the sample mean value of 𝑌, 
𝑥̅ଵ is the sample mean value of 𝑋ଵ, 
𝑥̅ଶ is the sample mean value of 𝑋ଶ 
 

 

Example 2.2 

In Example 1.5, the real estate agent, Lisa Miller found that the 𝑅ଶ coefficient defined by (1.5.1) 
was 75%. At that time, she had the simple regression model with an only predictor variable of 
the house price – its area. She thought she could increase the explanatory power of the model 
by addition more variables. She came up with the house age as an additional factor affecting 
the house price. So, now she has observations on the triple – house area measured by square 
meters and denoted by 𝑋ଵ, house age in years denoted by 𝑋ଶ and the corresponding price – the 
dependent variable 𝑌 measured in $1000s. (e.g. the 4th record in Figure 2.2.1 indicates that the 
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8 year old house with 1700 square meters was sold for $302 000). In order to base her 
predictions of house prices on a given pair of house area and age, she has to construct the 
equation (2.2.5). She uses the equations (2.4.6), (2.4.7) and (2.4.8) to compute the values of 
𝑏ଵ, 𝑏ଶ and 𝑏଴ respectively. The results are shown in the figure below. As expected, the 𝑏ଵ =

0.0474 > 0 and 𝑏ଶ = −9.5446 < 0. Lisa’s interpretation of 𝑏ଵ is the same as it was before, 
increasing the area of a house causes the house price to also increase. However, since the 𝑏ଶ 
coefficient is negative, Lisa concludes that older the house, less its price. The equation (2.2.5) 
thus is 

𝑦ො = 301.4223 + 0.0474𝑥ଵ − 9.5446𝑥ଶ 

At this point, Lisa is able to predict the house price for a given set of its area and age. However, 
she accepts her colleague’s – Mary’s advice to measure various other characteristics of the 
multiple regression model to have an idea about its prediction accuracy before she starts to use 
the model.  

Figure 2.2.1 
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As shown in Figure 1.3.3, the house price positively depends on its area. Lisa can visualize the 
negative dependence of the house price by its age by constructing a similar scatter plot for the 
sample observations on 𝑋ଶ and 𝑌. The result is shown in the following figure below 

 

Figure 2.2.2 

Note that the equation is deliberately NOT displayed using the “Display equation on chart” 
checkbox. The reason for this is that it would bring up an equation expressing the dependence 
of 𝑌 on 𝑋ଶ alone. When modelling the dependence of 𝑌 on 𝑋ଵ and 𝑋ଶ, co-movements of 𝑋ଵ 
and 𝑋ଶ also play a role as shown in (2.2.6) and (2.2.7), so 𝑏ଵ and 𝑏ଶ values are different from 
what they would be if 𝑌 was regressed only on any of these variables. So, the value of 𝑏ଵ is also 
different from what Lisa had in Example 1.3. 

2.3. Measures of Variability 

The estimated model from the sample is given by (2.2.3) which is restated below 

𝑦௜ = 𝑏଴ + 𝑏ଵ𝑥ଵ௜ + 𝑏ଶ𝑥ଶ௜ + ⋯ + 𝑏௞𝑥௞௜ + 𝑒௜ (2.3.1) 
This can be rewritten as 

𝑦௜ = 𝑦ො + 𝑒௜ 

as long as the sample fitted regression equation is defined by (2.2.4) as 

𝑦ො௜ = 𝑏଴ + 𝑏ଵ𝑥ଵ௜ + 𝑏ଶ𝑥ଶ௜ + ⋯ + 𝑏௞𝑥௞௜ (2.3.2) 
The difference between the sample mean and the dependent variable can be expressed as 

𝑦௜ − 𝑦ത = (𝑦ො௜ − 𝑦ത) + 𝑒௜ = (𝑦ො௜ − 𝑦ത) + (𝑦௜ − 𝑦ො௜) 

Squaring both sides yields the following equality 
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෍(𝑦௜ − 𝑦ത)ଶ = ෍(𝑦ො௜ − 𝑦ത + 𝑦௜ − 𝑦ො௜)ଶ = ෍(𝑦ො௜ − 𝑦ത)ଶ + ෍ 𝑒௜
ଶ

௡

௜ୀଵ

௡

௜ୀଵ

௡

௜ୀଵ

௡

௜ୀଵ

 

which is the sum of squares total decomposed into sum of squares regression and sum of squares 
error. So the equality above can be rewritten as 

𝑆𝑆𝑇 = 𝑆𝑆𝑅 + 𝑆𝑆𝐸 

out of which 

𝑆𝑆𝑇 = ෍(𝑦௜ − 𝑦ത)ଶ = ෍(𝑦ො௜ − 𝑦ത)ଶ + ෍(𝑦௜ − 𝑦ො௜)
ଶ

௡

௜ୀଵ

௡

௜ୀଵ

௡

௜ୀଵ

 
(2.3.3) 

 

𝑆𝑆𝐸 = ෍(𝑦௜ − 𝑦ො௜)
ଶ = ෍ 𝑒௜

ଶ

௡

௜ୀଵ

௡

௜ୀଵ

 
(2.3.4) 

and 

𝑆𝑆𝑅 = ෍(𝑦ො௜ − 𝑦ത)ଶ

௡

௜ୀଵ

 

 

(2.3.5) 

The figure below shows the differences for a single observed point 

 

Figure 2.3.1 
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Example 2.3 

Computing the values of (2.3.3), (2.3.4) and (2.3.5) is a right step towards determining whether 
the addition of the independent variable 𝑋ଶ improved the existing simple regression model or 
not. Lisa knows that these values alone are not sufficient and she needs to proceed with 
measuring the explanatory power of the 2 variable model. The computations of 𝑆𝑆𝐸, 𝑆𝑆𝑅 and 
𝑆𝑆𝑇 are shown below. 

 

Figure 2.3.2 

The column E contains the computations of  𝑦ො௜ for 𝑖 = 1, … ,10 by the function 
“=$B$20+$B$21*B2+$B$22*C2” in the cell E2. The 𝑆𝑆𝐸 is then computed in the cell E13 by the 
formula 𝑆𝑈𝑀𝑋𝑀𝑌2 which receives two vectors as arguments and makes the summation of the 
differences squared. On the other hand, in order to compute the 𝑆𝑆𝑅 value, at first, the squared 
differences have to be computed for the mean observed value of 𝑌 and its estimated value  𝑦ො. 
This computation is carried out in column F with the formula “=(E2-
AVERAGE($D$2:$D$11))^2” in the cell F2. The sum of these values is the 𝑆𝑆𝑅 computed in 
the cell E14. Finally, the sum of 𝑆𝑆𝐸 and 𝑆𝑆𝑅 is 𝑆𝑆𝑇 in E15 which could have alternatively 
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been computed by taking the sum of the differences 𝑦௜ − 𝑦ത for 𝑖 = 1, … ,10. For the sake of 
illustration, this computation is carried out in the following figure 

 

Figure 2.3.3 

The value in the cell E16 is the sum of the values in column G which are the squared 
differences between the observed value of 𝑌 and the sample mean value computed by “=(D2-
AVERAGE($D$2:$D$11))^2” in the cell G2. 

2.4. The Explanatory Power of a Multiple Regression Equation 

In Section 1.5, the coefficient of determination of the fitted regression equation was defined 
to be the proportion of total variability explained by the regression. So, it is defined as  

𝑅ଶ =
𝑆𝑆𝑅

𝑆𝑆𝑇
= 1 −

𝑆𝑆𝐸

𝑆𝑆𝑇
 

 

(2.4.1) 

It follows that 

0 ≤ 𝑅ଶ ≤ 1 
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Closer this value to one, better the capability of the fitted regression equation to make accurate 
predictions. In Section 1.5, we saw that the value of the coefficient of determination coincides 
with the square of the value of the sample correlation coefficient between 𝑋 and 𝑌 variables 
(there was only a single independent variable 𝑋 in Section 1.5). In particular, we had 𝑅ଶ = 𝑟௫௬

ଶ . 
This equality implies that the explanatory power of the model, 𝑅ଶ, is the same as the measure 
of linear dependence between the dependent and independent variables. So, the goodness of 
the model can be determined directly by the sample correlation coefficient between 𝑌 and 𝑋. 
On the other hand, there are more than one independent variables in the multiple regression 
model. So, how can all 𝑋௝, 𝑗 = 1, … , 𝑘 variables taken together explain the variation in the 
values of 𝑌? It turns out that the value of 𝑅ଶ is related to the correlation between the sample 
observations of 𝑌 and the estimated values of 𝑌. In particular, we have 

𝑅ଶ = 𝑟௬ ௬ො
ଶ  

 

(2.4.2) 

where 𝑟௬ ௬ො  is the correlation between the observed values of 𝑌 and its estimated values by the 
fitted regression equation (2.3.2). We can conclude that 𝑅ଶ is still a correlation coefficient 
squared just like in (1.5.2). However, unlike (1.5.2), here the correlation is taken between 𝑌 
and all the independent variables taken together and combined in  𝑦ො. It is reasonable to assign 
𝑟௬௬ො  a separate name emphasizing its role. So, the coefficient of multiple correlation is defined 
as  

𝑅 = ඥ𝑅ଶ = 𝑟௬௬ො  
 

(2.4.3) 

Now consider what happens when we add new predictor variables to the regression model. It 
can be shown that addition of a new variable reduces 𝑆𝑆𝐸. It can be thought of this way: every 
new independent variable brings new information and reduces 𝑆𝑆𝐸. Therefore, the portion of 
𝑆𝑆𝑅 in 𝑆𝑆𝑇 increases and so does 𝑅ଶ. So, addition of a new variable evidently improves the 
model by increasing 𝑅ଶ. However, the new variable may not contribute much to the 
explanatory power of the existing model and yet decrease the degrees of freedom of the model 
(Regression Degrees of Freedom is 𝑛 − 𝑘 − 1 where 𝑘 is the number of predictor variables). 
More degrees of freedom mean more accuracy of analyzes based on the sample. So, the 
dilemma whether or not to add a new variable depends on the measurement whether the new 
variable brings enough explanatory power to offset the loss of one degree of freedom is 
considered below.  

In order to correct the fact that addition of a non-relevant explanatory variable will still 
increase 𝑆𝑆𝑅 and correspondingly 𝑅ଶ, the adjusted 𝑅ଶ denoted by  𝑅തଶ is used. It is defined as  

𝑅തଶ = 1 −
𝑆𝑆𝐸/(𝑛 − 𝑘 − 1)

𝑆𝑆𝑇/(𝑛 − 1)
 (2.4.4) 
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where 𝑛 is the sample size  and 𝑘 is the number of explanatory variables. It can be seen in 
(2.4.4) that 𝑅ଶ penalizes the excessive use insignificant independent variables.  𝑅തଶ < 𝑅ଶ and 
provides a better way of comparing multiple regression models with different number of 
explanatory variables.  

Example 2.4 

In Example 2.3, it was unclear if addition of the new variable 𝑋ଶ, which is the age of a house, 
improved the model. The computations of the values of 𝑅ଶ, 𝑅 and 𝑅തଶ are shown in the 
following figure. 

 

Figure 2.4.1 

The real estate agent now has meaningful numbers at her disposal. 𝑅ଶ is 93%. However, in 
order to account for the possible unnecessary loss of degrees of freedom, Lisa relies on the 
adjusted coefficient of determination  𝑅തଶ which is also quite high, 91%. The root from 𝑅ଶ is 
computed as 𝑟௬௬ො  whose value is 96.56% implying a very strong linear relation between the 
predicted and observed values of 𝑌. 
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Lisa can now conclude that addition of the new variable (𝑋ଶ, the age of a house) significantly 
increased the explanatory power of the existing simple regression model (with only 𝑋ଵ, the 
area of a house). Now she can make better predictions taking these two factors into account. 

Lisa now wants to assess the variability for the individual components of the regression model. 
In particular, she determines to estimate the standard error of the estimate and the standard 
errors of the slope coefficients similarly to Section 1.6. 

2.5. Standard Error of the Estimate and Variance Estimators of the Regression 
Coefficients 

In Section 1.6, the unbiased estimate of the error variance was defined by the (1.6.1) and the 
root from this value was defined to be the standard error of the estimate. The geometric effects 
of this value was also described. In the context of the multiple regression model (2.2.2), the 
unbiased estimate of error variance is  

𝑠௘
ଶ =

∑ 𝑒௜
ଶ௡

௜ୀଵ

𝑛 − 𝑘 − 1
=

𝑆𝑆𝐸

𝑛 − 𝑘 − 1
 

(2.5.1) 

 

Note that the equation (1.6.1) is just the special case of (2.5.1) when 𝑘 = 1. In order to measure 
the effects of correlations between the independent variables, consider the generalized 
versions of (1.6.2). The sample estimators of the regression coefficient variance are  

𝑠௕భ

ଶ =
𝑠௘

ଶ

(𝑛 − 1)𝑠௫భ
ଶ (1 − 𝑟௫భ௫మ

ଶ )
 

(2.5.2) 

 

𝑠௕మ

ଶ =
𝑠௘

ଶ

(𝑛 − 1)𝑠௫మ
ଶ (1 − 𝑟௫భ௫మ

ଶ )
 

(2.5.3) 

 

The square roots from each are the standard errors of the slope coefficients. 

 

Example 2.5 

The computations of (2.5.1), (2.5.2) and (2.5.3) are carried out below 
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Figure 2.5 

The cells J1, J3 and J5 contain computations based on the above-mentioned formulas. The 
square roots from them are computed in the cells J2, J4 and J6. 

2.6. Hypothesis for the Multiple Regression Slope Coefficients 

When testing the existence of linear relationship between the dependent and independent 
variables in simple regression model, we conducted the correlation analyses. This was 
sufficient when dealing with a single explanatory variable. However, in the multiple 
regression model, there are more than one explanatory independent variables. In Section 1.7, 
we defined the hypothesis based on the Student’s 𝑡 test. Here, we generalize the hypothesis 
(1.7.1). 

For the regression model 

𝑦௜ = 𝛽଴ + 𝛽ଵ𝑥ଵ௜ + 𝛽ଶ𝑥ଶ௜ + ⋯ + 𝛽௞𝑥௞௜ + 𝜀௜ 

consider the following hypothesis 

𝐻଴: 𝛽௝ = 0 (𝑛𝑜 𝑙𝑖𝑛𝑒𝑎𝑟 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝) 
𝐻ଵ: 𝛽௝ ≠ 0        (𝑙𝑖𝑛𝑒𝑎𝑟 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝) 

 

(2.6.1) 

Here the existence of linear relationship between 𝑌 and 𝑋௝ is tested. This test can be regarded 
as a filter to decide whether a given variable should be included in the regression model or 
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not. For the least squares coefficients, 𝑏଴, 𝑏ଵ, … , 𝑏௞ and the estimated standard deviations 
𝑠௕బ

, 𝑠௕భ
, … , 𝑠௕ೖ

of the least squares estimators, it can be shown that 

𝑡 =
𝑏௝ − 𝛽௝

𝑠௕ೕ

=
𝑏௝ − 0

𝑠௕ೕ

=
𝑏௝

𝑠௕ೕ

,      𝑗 = 1, … , 𝑘 (2.6.2) 

follows the Student’s 𝑡 distribution with 𝑛 − 𝑘 − 1 degrees of freedom. So, the rejection rule 
for the hypothesis is to 

reject 𝐻଴ if 𝑡 ≥ 𝑡௡ି௞ିଵ,ఈ/ଶ      or      𝑡 ≤ −𝑡௡ି௞ିଵ,ఈ/ଶ 
 

(2.6.3) 

by the significance level 𝛼. Note that when 𝑘 = 1, (2.6.3) reduces to its simple regression 
version with the degrees of freedom 𝑛 − 2. 

Similarly, the hypothesis can be tested for any other value of 𝛽௝ , 𝑗 = 1, … , 𝑘. Taking the specific 
value of the slope coefficient 𝛽ଵ

∗ and the significance level 𝛼, several possible formulations of 
the hypothesis are summarized below 

Case 1: To test the null hypothesis 

𝐻଴: 𝛽௝ = 𝛽௝
∗ 𝑜𝑟 𝐻଴: 𝛽௝ ≤ 𝛽௝

∗ 
against the alternative 

𝐻ଵ: 𝛽ଵ > 𝛽ଵ
∗ 

the decision rule is to 
 

𝑟𝑒𝑗𝑒𝑐𝑡 𝐻଴ 𝑖𝑓 𝑡 =
𝑏௝ − 𝛽௝

∗

𝑠௕ೕ

≥ 𝑡௡ି௞ିଵ,ఈ 

 

Case 2: To test the null hypothesis 

𝐻଴: 𝛽௝ = 𝛽௝
∗ 𝑜𝑟 𝐻଴: 𝛽௝ ≥ 𝛽௝

∗ 

 against the alternative 

𝐻ଵ: 𝛽௝ < 𝛽௝
∗ 

the decision rule is to 

𝑟𝑒𝑗𝑒𝑐𝑡 𝐻଴ 𝑖𝑓 𝑡 =
𝑏௝ − 𝛽௝

𝑠௕ೕ

≤ −𝑡௡ି௞ିଵ,ఈ 

 



46     T. Toronjadze (ed.) 

 

Case 3: To test the null hypothesis 

𝐻଴: 𝛽௝ = 𝛽௝
∗ 

 against the alternative 

𝐻ଵ: 𝛽௝ ≠ 𝛽௝
∗ 

 the decision rule is to 

𝑟𝑒𝑗𝑒𝑐𝑡 𝐻଴ 𝑖𝑓 𝑡 =
𝑏௝ − 𝛽௝

∗

𝑠௕ೕ

> 𝑡௡ି௞ିଶ,ఈ/ଶ 𝑜𝑟 𝑡 =
𝑏௝ − 𝛽௝

∗

𝑠௕ೕ

≤ −𝑡௡ି௞ିଵ,ఈ/ଶ 

The last one is the generalized version of (2.6.1). In all of the above cases (with one tailed test), 
the critical value 𝑡௡ି௞ିଵ,ఈ satisfies 

𝑃൫𝑡௡ି௞ିଵ > 𝑡௡ି௞ିଵ,ఈ൯ = 𝛼  
The for positive 𝑡, p-value is defined as  

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑃(𝑡௡ି௞ିଵ > 𝑡) (2.6.4) 
 

So, the rejection rules above which compares the 𝑡 statistics to the critical value can be replaced 
by comparison of the p-value to the significance level. 

 

Hypothesis test for overall significance 

Even though the hypothesis described above allow us to individually test the regression 
coefficient values 𝛽௝ against a given value 𝛽௝

∗. There is a way to test all of the coefficients against 
zero. Consider again the multiple regression model  

𝑦௜ = 𝛽଴ + 𝛽ଵ𝑥ଵ௜ + 𝛽ଶ𝑥ଶ௜ + ⋯ + 𝛽௞𝑥௞௜ + 𝜀௜ 

and the hypothesis formulated as 

𝐻଴: 𝛽ଵ = 𝛽ଶ = ⋯ = 𝛽௞ = 0 
𝐻ଵ: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝛽௝ ≠ 0 

 

(2.6.5) 

Accepting the null hypothesis would lead to a conclusion that none of the explanatory 
variables is statistically significant and they should not to be included in the regression model. 
Rather, the new set of the independent variables has to be proposed. On the other hand, if the 
null hypothesis is rejected (as it usually happens), then we can conclude that this set of 
variables contains at least one which is statistically significant for explaining the value of the 
dependent variable. However, accepting the alternative hypothesis does not provide any 
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information for identifying that variable beyond the fact that it is in a given set. In order to 
identify the relevant variables, the individual tests need to be carried out using the Student’s 𝑡 
test. 

Before defining the rejection rule for (2.6.5), let us define mean square regression  as 

𝑀𝑆𝑅 =
𝑆𝑆𝑅

𝑘
 (2.6.6) 

and mean square for error as 

𝑀𝑆𝐸 =
𝑆𝑆𝐸

𝑛 − 𝑘 − 1
= 𝑠௘

ଶ (2.6.7) 

 The ratio 

𝐹 =
𝑀𝑆𝑅

𝑀𝑆𝐸
=

𝑆𝑆𝑅/𝑘

𝑆𝑆𝐸/(𝑛 − 𝑘 − 1)
=

𝑆𝑆𝑅/𝑘

𝑠௘
ଶ

 

 

(2.6.8) 

follows the 𝐹 distribution with 𝑘 degrees of freedom for the numerator and 𝑛 − 𝑘 − 1 

degrees of freedom for the denominator. For a given significance level 𝛼, the decision rule 

for (2.6.5) is to 

𝑟𝑒𝑗𝑒𝑐𝑡 𝐻଴ 𝑖𝑓 𝐹 = 𝐹௞,௡ି௞ିଵ > 𝐹௞,௡ି௞ିଵ,ఈ (2.6.9) 
 

where 𝐹௞,௡ି௞ିଵ,ఈ is the critical value for which 

𝑃൫𝐹௞,௡ି௞ିଵ > 𝐹௞,௡ି௞ିଵ,ఈ൯ = 𝛼 (2.6.10) 
 

is defined to be the p-value for 𝐹௞,௡ି௞ିଵ,ఈ.  

Hypothesis test for a subset of regression explanatory variables 

In addition to testing all of the coefficients against zero as in (2.6.5), there is a way to test the 
hypothesis for a subset of variables. Consider the following multiple regression model  

𝑦 = 𝛽଴ + 𝛽ଵ𝑥ଵ + 𝛽ଶ𝑥ଶ + ⋯ + 𝛽௞𝑥௞ + 𝛼ଵ𝑧ଵ + 𝛼ଶ𝑧ଶ + ⋯ + 𝛼௥𝑧௥ + 𝜀 
 

(2.6.11) 

There are 𝑘 + 𝑟 explanatory variables in (2.6.11) out of which the first 𝑘 variables are assumed 
to be affecting the dependent variable. The variables 𝑧ଵ, … , 𝑧௥ are to be tested by the following 
hypothesis 

𝐻଴: 𝛼ଵ = 𝛼ଶ = ⋯ = 𝛼௥ = 0 
𝐻ଵ: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝛼௝ ≠ 0 

(2.6.12) 
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Accepting the null condition would imply that all of the 𝛼௝ coefficients are simultaneously 
zero and none of the variables is affecting the dependent variable. On the other hand, rejecting 
the null implies that there is at least one variable relevant in the estimation of the dependent 
variable value and the 𝑡 test described above needs to be conducted to identify such variables 
individually. It can be shown that under the standard regression assumptions 

𝐹 =
[𝑆𝑆𝐸(𝑟) − 𝑆𝑆𝐸 ]/𝑟

𝑠௘
ଶ

 (2.6.13) 

 

follows the 𝐹 distribution with the numerator degrees of freedom 𝑟, and the denominator 
degrees of freedom 𝑛 − 𝑘 − 𝑟 − 1. 𝑆𝑆𝐸(𝑟) is the sum of squared errors computed for the 
regression involving only the first 𝑘 variables 𝑥ଵ, 𝑥ଶ, … , 𝑥௞ which is 

𝑦 = 𝛽଴ + 𝛽ଵ𝑥ଵ + 𝛽ଶ𝑥ଶ + ⋯ + 𝛽௞𝑥௞ + 𝜀 

This is referred to as restricted sum of squared errors. 𝑆𝑆𝐸 is the sum of squared errors for the 
entire model (2.6.11). Once having computed the value of 𝐹, the decision rule for the 
hypothesis is to 

𝑟𝑒𝑗𝑒𝑐𝑡 𝐻଴ 𝑖𝑓 𝐹 > 𝐹௥,௡ି௞ି௥ିଵ,ఈ (2.6.14) 
 

Example 2.6.1 

In Example 2.4, the real estate agent, Lisa Miller had to make a choice of the new variable to 
be added to the existing regression model. Ultimately, she saw that addition of 𝑋ଶ improved 
the model by increasing the adjusted coefficient of determination significantly. Generally, in 
order to decide on a given explanatory variable, the hypothesis (2.6.1) is tested. Lisa decided 
to now test the following hypotheses by 𝛼 = 0.1.  

𝐻଴: 𝛽ଵ = 0 
𝐻ଵ: 𝛽ଵ ≠ 0 

 

(2.6.15) 

and 

𝐻଴: 𝛽ଶ = 0 
𝐻ଵ: 𝛽ଶ ≠ 0 

(2.6.16) 

 

The following figure illustrates the computations 
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Figure 2.6.1 

Note that 𝑡௡ି௞ିଵ,ఈ/ଶ = 𝑡଻,଴.଴ହ is computed in the cell J10. Since the hypothesis is tested based 
on 𝛼 = 0.1, the T.INV.2T function receives the significance level as an argument and makes 
the division by 2. Lisa obtains the critical value to be 𝑡଻,଴.଴ହ = 1.8946. As long as the values of 
both 𝑡ଵ and 𝑡ଶ statistics in absolute value are greater than the 1.8946, Lisa concludes that by 
the given significance level of 𝛼 = 0.05, both variables, the house area 𝑋ଵ and the house age 
𝑋ଶ are linearly related to the house price 𝑌 and retains them in the model. 

 

Example 2.6.2 

For the sake of illustration, the following hypothesis could have been tested before the 
hypothesis above 

𝐻଴: 𝛽ଵ = 𝛽ଶ = 0 

𝐻ଵ: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝛽௝ ≠ 0 
 

(2.6.17) 
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Figure 2.6.2 

Since 𝐹 = 48.25 > 𝐹ଶ,଻,଴.ଵ = 3.26, the null hypothesis is rejected. 

As an alternative, the p-values can be used to test the hypothesis.  

 

Example 2.6.3 

 

Figure 2.6.3 
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The p-values corresponding to 𝑡ଵ and 𝑡ଶ with the given degrees of freedom (which is 7) are 
computed in the cells J11 and J12. As long as the hypothesis is tested by 𝛼 = 0.1, the null 
hypotheses (2.6.15) and (2.6.16) are rejected since the values in the cells J11 and J12 are 

𝑃(𝑡௡ି௞ିଵ > 𝑡ଵ) = 0.0861 < 𝛼 = 0.1 

and 

𝑃(𝑡௡ି௞ିଵ > |𝑡ଶ|) = 0.0034 < 𝛼 = 0.1 

Note that since the density function of the Student’s 𝑡 distribution is symmetric and 𝑡ଶ < 0, 
the absolute value of 𝑡ଶ is used as an argument of the T.DIST.2T function. 

Similarly, the p-value for F statistics, also known as Significance F, computed in the cell J18 is 
less than the critical value 

𝑃൫𝐹௞,௡ି௞ିଵ > 𝐹൯ = 0 < 𝛼 = 0.1 (2.6.18) 
 

and the hypothesis (2.6.17) is rejected. 

 

Example 2.6.4 

Suppose the real estate agent in the previous examples, Lisa Miller is considering to have three 
explanatory variables for the dependent variable house price - 𝑋ଵ being the area measured in 
square meters, 𝑋ଶ as the house age and 𝑋ଷ as the number of bedrooms. Thus, the regression 
model is 

𝑦 = 𝛽଴ + 𝛽ଵ𝑥ଵ + 𝛽ଶ𝑥ଶ + 𝛽ଷ𝑥ଷ 

She does not doubt that the house area affects the house price. So she does not need to test any 
hypothesis for 𝑋ଵ. She only wants to know if any of the rest of the variables affects the price. 
The regression model above can be rewritten as 

𝑦 = 𝛽଴ + 𝛽ଵ𝑥ଵ + 𝛼ଶ𝑧ଶ + 𝛼ଷ𝑧ଷ 

So, she attempts to test the following hypothesis 

𝐻଴: 𝛼ଶ = 𝛼ଷ = 0 

𝐻ଵ: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑎௝ ≠ 0 

The following figure illustrates the sample observations on three independent variables 
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Figure 2.6.4 

In order to compute the 𝐹 statistics from (2.6.13), Lisa has to split the regression model into 
two parts, the estimated regression equation for the first one is 

𝑦ො = 𝑏଴ + 𝑏ଵ𝑥ଵ 

for which she computes 𝑆𝑆𝐸(𝑟), and the second equation is 

𝑦ො = 𝑏଴ + 𝑏ଵ𝑥ଵ + 𝑏ଶ𝑥ଶ + 𝑏ଷ𝑥ଷ 

for which she computes 𝑆𝑆𝐸. In order to follow the procedure of the hypothesis, we take a 
shortcut in computing these values. The following figure illustrates construction of the 
regression table only for 𝑋ଵ using the Data tab in Excel, Data Analysis, Regression option. 

 
Figure 2.6.5 
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The resulting output table is 

 

Figure 2.6.6 

From which we only need the highlighted 𝑆𝑆𝐸(𝑟). Similarly, constructing the regression table 
for 𝑋ଵ, 𝑋ଶ, 𝑋ଷ as follows 

 

Figure 2.6.7 
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results in the following output 

 

Figure 2.6.8 

The highlighted numbers are 𝑠௘
ଶ and 𝑆𝑆𝐸. Computation of 𝐹 from (2.6.13) and the critical value 

𝐹௥,௡ି௞ି௥ିଵ,ఈ = 𝐹ଶ,଻,଴.଴ହ is shown below 
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Figure 2.6.9 

According to the rejection rule (2.6.14), since 𝐹 = 11.1815 > 𝐹ଶ,଻,଴.଴ହ = 0.0517, the null 
hypothesis is rejected. The conclusion Lisa can draw from here is that at least one of the 
variables 𝑋ଶ, 𝑋ଷ is affecting 𝑌. For a detailed identification, Lisa should conduct the 𝑡-based 
tests discussed above. 

2.7. Confidence Intervals for the Regression Coefficients 

For the multiple regression model, we defined 𝑏଴, 𝑏ଵ, … 𝑏௞ to be the unbiased estimators for the 
population coefficients 𝛽଴, 𝛽ଵ, … , 𝛽௞. If the standard regression assumptions hold, the 
confidence interval for the 𝛽௝ coefficient corresponding to 100(1 − 𝛼)% confidence level is 

𝑏௝ ± 𝑡௡ି௞ିଵ,ఈ/ଶ𝑠௕ೕ
 (2.7.1) 

where 𝑡௡ି௞ିଵ,ఈ/ଶ is the number for which 

𝑃൫𝑡௡ି௞ିଵ > 𝑡௡ି௞ିଵ,ఈ/ଶ൯ = 𝛼/2 

and the random variable 𝑡௡ି௞ିଵ follows the Student’s 𝑡 distribution with 𝑛 − 𝑘 − 1 degrees 
of freedom. 
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Example 2.7 

Once having computed the values of 𝑏ଵ and 𝑏ଶ, Lisa Miller gets more information about the 
estimates of the corresponding population coefficients 𝛽ଵ and 𝛽ଶ by constructing the 
confidence intervals (2.7.1) for each. This way, she estimates the minimum and maximum 
values the given coefficients obtain by the confidence level 100(1 − 𝛼)%. The following 
figure illustrates the computations 

 

Figure 2.7.1 

The cells D21 and D22 compute the lower confidence limits for 𝛽ଵ and 𝛽ଶ coefficients and 
the cells F21 and F22 compute the upper confidence limits respectively. 

The formulas used are 

D21: =B21-T.INV.2T(0.05,7)*J4 

F21: =B21+T.INV.2T(0.05,7)*J4 

D22: =B22-T.INV.2T(0.05,7)*J6 

F22: =B22+T.INV.2T(0.05,7)*J6 
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2.8. Regression Table 

Computations from the preceding sections can be summarized by the regression table. That is 
a multiple regression analogue of the table shown in Section 1.10. By applying the regression 
package in Excel using the Data tab, Data Analysis, Regression option as 

 

Figure 2.8.1 

 

the summary table shown below is obtained 
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Figure 2.8.2 

Almost all of the coefficients shown in Figure 2.8.2 have been computed in the preceding 
sections. The following table summarizes the references of each number from Figure 2.8.2 to 
the corresponding equations in the text. 

  

# Cell Description Equation 
1. B4 𝑅 (2.4.3) 
2. B5 𝑅ଶ (2.4.1) 
3. B6 𝑅തଶ (2.4.4) 
4. B7 𝑠௘  (2.5.1) 
5. C12 𝑆𝑆𝑅 (2.3.5) 
6. C13 𝑆𝑆𝐸 (2.3.4) 
7. C14 𝑆𝑆𝑇 (2.3.3) 
8. D12 𝑀𝑆𝑅 (2.6.6) 
9. D13 𝑀𝑆𝐸 (2.6.7) 

10. E12 𝐹 (2.6.8) 
11. F12 𝑃(𝐹௞,௡ି௞ିଵ > 𝐹) mentioned in (2.6.19) 
12. B17 𝑏଴ (2.2.8) 
13. B18 𝑏ଵ (2.2.6) 
14. B19 𝑏ଶ (2.2.7) 
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15. C18  𝑠௕భ

 square root from (2.5.2) 
16. C19 𝑠௕మ

 square root from (2.5.3) 
17. D18 𝑡ଵ (2.6.2) 
18. D19 𝑡ଶ (2.6.2) 
19. E18 𝑃(𝑡௡ି௞ିଵ > 𝑡ଵ) (2.6.4) 
20. E19 𝑃(𝑡௡ି௞ିଵ > |𝑡ଶ|) (2.6.4) 
21. F18 𝑏ଵ − 𝑡௡ି௞ିଵ,ఈ/ଶ𝑠௕భ

 (2.7.1) 
22. G18 𝑏ଵ + 𝑡௡ି௞ିଵ,ఈ/ଶ𝑠௕భ

 (2.7.1) 
23. F19 𝑏ଶ − 𝑡௡ି௞ିଵ,ఈ/ଶ𝑠௕మ

 (2.7.1) 
24. G19 𝑏ଶ + 𝑡௡ି௞ିଵ,ఈ/ଶ𝑠௕మ

 (2.7.1) 

Table 2.8 

2.9. Dummy Variables 

Up until this point in the text, all independent variables considered were numerical in nature. 
The real estate agent in the examples decided to predict the house price (measured in $1000s) 
by two explanatory variables - 𝑋ଵ being the house area measured in square meters, and 𝑋ଶ 
being the house age measured in years. What if she now wants to include another variable – 
location of the house as an additional factor determining the price? Location is not a numerical 
variable, but rather a categorical variable capturing a certain characteristic of a house. 

Let us introduce a dummy variable as categorical independent variable obtaining only two 
values: yes or no, on or off, red or black (white also works), male or female, etc. The values are 
recorded as 0 (in case of a certain criteria not satisfied) or 1 (in case of a certain criteria 
satisfied). 

Consider a two-variable model 

𝑦ො = 𝑏଴ + 𝑏ଵ𝑥ଵ + 𝑏ଶ𝑥ଶ (2.9.1) 
 

where 𝑥ଵ is a normal numerical variable and 𝑥ଶ is dummy – it can either be 0 or 1. Let us 
consider both cases separately. When 𝑥ଶ = 0 we have (2.9.1) rewritten as 

𝑦ො = 𝑏଴ + 𝑏ଵ𝑥ଵ (2.9.2) 
and when 𝑥ଶ = 1 we have 

𝑦ො = 𝑏଴ + 𝑏ଵ𝑥ଵ + 𝑏ଶ = (𝑏଴ + 𝑏ଶ) + 𝑏ଵ𝑥ଵ (2.9.3) 
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Figure 2.9.1 

In any case, (2.9.1) is reduced to a (linear) function of a single variable 𝑥ଵ. We see that the 
slopes of these two equations are both 𝑏ଵ. Thus, the lines corresponding to these equations are 
going to be parallel. However, the intercept coefficients differ. 𝑏଴ is the intercept in the first 
line and 𝑏଴ + 𝑏ଵ is the slope of another. So, it can be concluded that adding a dummy variable 
to the existing model only affects the intercept coefficient. In particular, it splits the model 
into two separate equations – one predicting the value of 𝑌 in case of 𝑥ଶ = 0 and another for 
𝑥ଶ = 1. The goal is to compute the coefficients 𝑏଴, 𝑏ଵ and 𝑏ଶ in the least squares sense. 

Multiple regression with more than one dummy variables 

Every additional dummy variable splits the existing scenarios in two. So, if in case of one 
dummy variable, there are two of them, that will result in four different scenarios for all 
possible combinations of the dummy variable values. To make it clear, consider the multiple 
regression model 

𝑦ො = 𝑏଴ + 𝑏ଵ𝑥ଵ + 𝑏ଶ𝑥ଶ + 𝑏ଷ𝑥ଷ (2.9.4) 
 

where 𝑥ଵ is a numerical variable while 𝑥ଶ and 𝑥ଷ are dummies. Then, there will be four 
versions of (2.9.4) 

Case 1: 𝑥ଶ = 0, 𝑥ଷ = 0 

𝑦ො = 𝑏଴ + 𝑏ଵ𝑥ଵ (2.9.5) 
Case 2: 𝑥ଶ = 0, 𝑥ଷ = 1 

𝑦ො = (𝑏଴ + 𝑏ଷ) + 𝑏ଵ𝑥ଵ (2.9.6) 
Case 3: 𝑥ଶ = 1, 𝑥ଷ = 0 

𝑦ො = (𝑏଴ + 𝑏ଶ) + 𝑏ଵ𝑥ଵ (2.9.7) 
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Case 4: 𝑥ଶ = 1. 𝑥ଷ = 1 

𝑦ො = (𝑏଴ + 𝑏ଶ + 𝑏ଷ) + 𝑏ଵ𝑥ଵ (2.9.8) 
 

Again, the slopes of these lines is the same 𝑏ଵ and intercepts differ. The Figure 2.9.2 illustrates 
a possible scenario. 

 

Figure 2.9.2 

Example 2.9.1 

Consider again the example of the real estate agent, Lisa Miller. She needs to predict the house 
price with 2000 square meters of area located in the city center and another house located 
outside of the city center with 1850 square meters of area. Initially she had the house price 𝑌 
as a dependent variable with 𝑋ଵ – house area measured in square meters as an explanatory 
variable. She thinks that in addition to area, location is a significant determinant of the house 
price in a given city. So, she decides to express house location as a dummy variable 𝑋ଶ whose 
realizations are either 1 if the house is located in the city center, or 0 if it is located elsewhere. 
Thus, she is going to obtain the fitted regression equation (2.9.1) split into two separate 
equations (2.9.2) and (2.9.3).  

She collects the data of observations on 𝑌, 𝑋ଵ and 𝑋ଶ as shown below 
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Figure 2.9.2 

e.g. the 4th record indicates that a house with 1700 square meters located in the city center was 
sold for $302 000 and the 5th record shows a house with 1050 square meters of area located 
outside of the city center was sold for $169 000. 

Lisa computes 𝑏଴, 𝑏ଵ and 𝑏ଶ according to formulas (2.2.8), (2.2.6) and (2.2.7) 

 

Figure 2.9.3 

The procedure used in Figure 2.9.3 above is examined in detail in Section 2.2. As a shortcut, 
she could have alternatively gotten the same coefficients using the regression package of Excel 
in the Data tab, Data Analysis, Regression option. The resulting output table would be 



Decision Modelling 63 

 

 

Figure 2.9.4 

Note that addition of the house location as an additional (dummy) variable contributed to the 
explanatory power of the regression and the existing 𝑅ଶ rose from 75% to 90% and adjusted 
coefficient of determination  𝑅തଶ rose to 87%. 

Having the values of 𝑏଴, 𝑏ଵ and 𝑏ଶ computed, Lisa constructs the fitted regression equation 
(2.9.1) to be 

𝑦ො = 57.2320 + 0.1022𝑥ଵ + 55.9054𝑥ଶ 

By inserting the desired values of 𝑥ଵ and 𝑥ଶ in the above equation, Lisa can predict the 
corresponding house price. The figure below shows the expected prices of houses Lisa needed 
to compute. 
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Figure 2.9.5 

As illustrated above, the house with 2000 square meters of area located in the city center is 
expected to be sold for $317 512 and the house with 1850 square meters of area located outside 
of the city center is expected to be sold for $246 278. 

Generally, Lisa can construct the prediction graphs (lines) corresponding to (2.9.2) and (2.9.3) 
as functions of area only as illustrated below 

 

Figure 2.9.6 

The cell G2 contains the formula “=$B$13+$B$14*F2” and the cell H2 – 
“=$B$13+$B$14*F2+$B$15”. 
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Example 2.9.2 

Suppose Lisa Miller wants to predict the prices of two houses. The first with 1880 square meters 
of area located in the city center with the available parking space and another with 2150 square 
meters of a house located outside of the city center without an available parking space.  

She considers adding another dummy variable to the existing model in the previous Example 
2.9.1. The new variable 𝑋ଷ equals 1 if there is an available parking space around a house and 0 
otherwise. She collects the sample data of 10 records shown below 

 

Figure 2.9.7 

e.g. the 4th record now indicates that a house with 1700 square meters of area, located in the 
city center with an available parking space was sold for $302 000 and the 5th record indicates 
that a house with 1050 square meters of area located outside of the city center without an 
available parking space was sold for $169 000. The fitted equation whose coefficients Lisa has 
to compute is (2.9.4). She proceeds with the regression package described above 
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Figure 2.9.8 

which yields the regression tables 

 

Figure 2.9.9 
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With these coefficients at hand, (2.9.4) becomes 

𝑦ො = 94.2230 + 0.0783𝑥ଵ + 38.6801𝑥ଶ + 38.9652𝑥ଷ 

Next, she computes the expected price of houses of her interest. The results are shown below 

 

Figure 2.9.10 

In particular, with 𝑥ଵ = 1880, 𝑥ଶ = 1, 𝑥ଷ = 1, she obtains  𝑦ො = $340 30, and for 𝑥ଵ =

2150, 𝑥ଶ = 0, 𝑥ଷ = 0,  𝑦ො = $241 505. 

The value in J2 is computed by the formula “=$B$13+$B$14*G2+$B$15*H2+$B$16*I2” and the 
value in J3 by “=$B$13+$B$14*G3+$B$15*H3+$B$16*I3”. 

Remark: Note that the p-value for the 𝛽ଷ coefficient is 0.1741 > 𝛼 = 0.1. So, based on the 
significance level of 10%, 𝑋ଷ does not affect the house price and needs not be included in the 
regression model. We are ignoring this fact for the current example. 

In addition, Lisa can specify equations (2.9.5), (2.9.6), (2.9.7) and (2.9.8) for four different 
scenarios.  

𝑦ො = 94.223 + 0.0783𝑥ଵ (2.9.5’) 
 

𝑦ො = 133.188 + 0.0783𝑥ଵ (2.9.6’) 
 

𝑦ො = 132.905 + 0.0783𝑥ଵ (2.9.7’) 
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𝑦ො = 171.87 + 0.0783𝑥ଵ (2.9.8’) 

  
In the following figure, different scenarios are listed below. e.g. the scenario 2 implies a house 
located outside of the city center with an available parking space and the scenario 4 implies a 
house located in the city center located in the city center. The columns H to K carry out the 
computations of the equations (2.9.5)-(2.9.8). For the listed values of 𝑥ଵ in the L column, the 
formula in the cell H2 extended throughout the array is 

“=$B$13+$B$14*$L2+$B$15*M$14+$B$16*M$15”. 

 

Figure 2.9.10 

Finally, the Figure 2.9.2 can be drawn in terms of these numbers as 

 

Figure 2.9.11 
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Note that there are 4 separate lines on the graph. The reason why only three appear is that the 
differences between the predicted house values for the scenarios 2 and 3 are very small making 
the distance between the corresponding lines invisible. 

We can conclude that Lisa Miller has four equations at her disposal. Depending on the desired 
scenario, she can make predictions using the corresponding equation. 
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Chapter 3.  Nonlinear Regression 

3.1. Quadratic Regression 
The simple regression model examined in Chapter 1 was a linear model implying linear 
relationship between the dependent and independent variables. However, in many applied 
problems, the dependence may not be linear. There are various types of dependences out of 
which we only investigate a quadratic model. 

In Figure 1.3.3, the scatter plot of 𝑋 and 𝑌 was illustrated. Since the scattered points are 
clustered around the straight line, it is expected that the relationship between these variables 
will be linear. This fact is shown in Figure 2.10.1 below 

 

Figure 3.1.1 

Note that the linear pattern is preserved for large and small values of 𝑋. Therefore, the residuals 
(differences between points on the line and the observed points for given values of 𝑋) is not 
showing any unusual change as we move through the extreme values of 𝑋 on either side. When 
detecting the linear pattern of this kind, one would follow the procedures described in Chapter 
1 to build a simple regression model. What if the scatter plot looks as follows? 

 

Figure 3.1.2 
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It is obvious that the scatter plot does not follow a linear pattern. Fitting a straight line into 
the points would be unreasonable. It would introduce higher residuals at the extreme values 
of 𝑋 as the line seems to be diverging from the observed points. The following figure illustrates 
this effect 

 

Figure 3.1.3 

In an ideal case, there must be a more flexible fitting curve capable of following the observed 
pattern. The quadratic regression aims to capture the pattern following the shape of parabola. 
Figure 3.1.4 shows the fitting curve corresponding to the quadratic equation 

 

Figure 3.1.4 

The quadratic regression model may be considered when scatter plot takes one of the following 
shapes 
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Figure 3.1.5 

or 

 

Figure 3.1.6 

Recall that the simple linear regression model was defined as 

𝑌 = 𝛽଴ + 𝛽ଵ𝑋 + 𝜀 (3.1.1) 
which was estimated by 

𝑦ො = 𝑏଴ + 𝑏ଵ𝑥 (3.1.2) 
 

The quadratic regression model extends the simple linear regression model (3.1.1) by adding 
the quadratic component 𝛽ଶ𝑋ଶ as follows 

𝑌 = 𝛽଴ + 𝛽ଵ𝑋 + 𝛽ଶ𝑋ଶ + 𝜀 (3.1.3) 
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Note that there is still an only explanatory variable 𝑋. The second term 𝛽ଶ𝑋ଶ involves the same 
variable and introduces concavity to the model. Corresponding fitting quadratic equation is 

𝑦ො = 𝑏଴ + 𝑏ଵ𝑥 + 𝑏ଶ𝑥ଶ (3.1.4) 
 

Before computing the coefficients 𝑏଴, 𝑏ଵ and 𝑏ଶ, the importance of quadratic term  𝛽ଶ𝑋ଶ has to 
be measured. This is done by the following hypothesis 

𝐻଴: 𝛽ଶ = 0 
𝐻ଵ: 𝛽ଶ ≠ 0 

(3.1.5) 

 

Accepting the null hypothesis suggests that the quadratic term improves the model while 
rejecting it implies the opposite. It can be shown that under general conditions, 

𝑡 =
𝑏ଶ − 𝛽ଶ

𝑠௕మ

 

 

(3.1.6) 

follows a Student’s 𝑡 distribution with 𝑛 − 3 degrees of freedom. (𝑛 − 3 comes from 𝑛 − 𝑘 − 1 
where 𝑘 is the number of explanatory coefficients - 𝛽ଵ and 𝛽ଶ in quadratic model). So, the 
rejection rule for the hypothesis (3.1.5) is to 

𝑟𝑒𝑗𝑒𝑐𝑡 𝐻଴ 𝑖𝑓 |𝑡| =
𝑏ଶ − 𝛽ଶ

𝑠௕మ

> |𝑡௡ିଷ,ఈ/ଶ| (3.1.7) 

 

where 𝑡௡ିଷ,ఈ is the number for which 

𝑃(|𝑡௡ିଷ| > |𝑡௡ିଷ,ఈ\ଶ|) = 𝛼 

and the corresponding p-value is 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑃(|𝑡௡ିଷ| > |𝑡|) (3.1.8) 
 

It is useful to ultimately based the decision of whether the model (3.1.2) must be extended by 
the quadratic component in (3.1.3) by comparing the coefficients of determination 𝑅ଶ from 
the linear model and the adjusted coefficient of determination  𝑅തଶ from the quadratic model. 
The following example illustrates the comparison 

Example 3.1 

Tom Davis produces and exports wine. There are different regulations in each importing 
country. According to the regulations, the wine purity must be at a predetermined minimum 
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level in order to be allowed for selling on the market. Here is the list of purity levels for each 
importing country 

Country Purity of Wine in % 
A 83 
B 95 
C 86 
D 80 
E 99 
F 93 
G 85 

Table 3.1.1 

As we can see, Tom is only allowed to export wines if its purity is at least 80%. Some countries 
have quite tough requirements. For example, the country E will only allow a wine with at least 
99% purity. Tom uses a unique technology and method for wine production. So he needs a 
model to estimate (or predict) the wine purity based on time. He has observed 15 production 
outputs and recorded the purity level as a dependent variable 𝑌 and time in weeks it takes to 
get to this level as an independent explanatory variable 𝑋. The figure below shows the sample 
observations and the scatter diagram 

 

Figure 3.1.7 

e.g. the 10th record indicates that wine having had been filtered for 13 weeks reached 44% of 
purity. Tom has two options to predict the wine purity. He can either use the linear simple 
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regression model (3.1.2) or the quadratic model (3.1.4). Even though the scatter diagram 
indicates a clear non-linear pattern and Tom is planning to use the quadratic model, linear 
regression is also expected to be a suitable model predicting the wine purity with a reasonably 
high precision. So, Tom starts with what he expects to be a better model – quadratic regression. 

First, he computes the coefficient estimates for 𝛽଴, 𝛽ଵ and 𝛽ଶ from (3.1.3), which are 𝑏଴, 𝑏ଵ and 
𝑏ଶ. This is done by the scatter plot diagram directly by selecting the polynomial model of 
order 2. 

 

Figure 3.1.8 

Selecting “Display Equation on chart” checkbox on the same window yields the quadratic 
regression equation shown in Figure 3.1.9 below. The values of the coefficients are copied in 
the cells B18-B20.  
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Figure 3.1.9 

The equation (3.1.4) with these values is 

𝑦ො = 0.9526 + 0.4077𝑥 + 0.9526𝑥ଶ 

Tom can now estimate 𝑌 values by 𝑦ො for all observations on 𝑋. The following figure illustrates 
relevant computations. 
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Figure 3.1.10 

In order to compute the sum of squares errors and sum of squares regression, 𝑦ො values are first 
computed in the column D by “=$B$18+$B$19*B2+$B$20*B2^2” in D2 and the squared 
differences between the mean value of observed 𝑌 and the estimated value of 𝑌 are computed 
in the column E by “=(AVERAGE($C$2:$C$16)-D2)^2”. Note that the 𝑅ଶ coefficient and 
adjusted coefficient of determination 𝑅തଶ are close to 100% meaning that the model is 
extremely accurate. So, Tom can almost precisely predict the wine purity for a given filtering 
time. 

Tom builds the simple linear regression model for comparison. The figure below shows the 
coefficients computed 
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Figure 3.1.11 

The equation (3.1.2) is 

𝑦ො = −17.3681 + 5.2891𝑥 

Similar computations as in quadratic model above yields the coefficient of determination equal 
to 0.9563. 
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Figure 3.1.12 

As long as 𝑅ଶ = 0.9563, it can be concluded that the linear model also provides a reasonably 
good explanatory power. However, comparing 𝑅തଶ from the quadratic model with 𝑅ଶ of the 
linear model suggests that the quadratic model outperforms its linear counterpart. 

As a conclusion, Tom can now predict times it takes to be able to export wine to various 
countries according to Table 3.1.1 with a great accuracy. 
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Chapter 4.  Time Series Models 

4.1. Introduction 

All models examined so far in the text involved dependent random variable explained by one 
or more predictor (independent) variables. A random variable is a variable that can obtain 
various values at a given point in time. Sample observations on these variables helped construct 
the models later used for making predictions. 

The objective of this chapter is to construct forecasting models based on time series. Time 
Series is a data recorded over successive increments of time. 

Before selecting the prediction model for a given time series data, it is important to identify 
the data pattern. There can typically be four basic data pattern for the time series: horizontal, 
trend, cyclical and seasonal. 

When time series data fluctuates around a constant level, horizontal or stationary pattern 
exists.  

On the other hand, when the values of time series data grow or decline over a certain time 
period, the trend pattern emerges. Trend is a long term component of a time series data that 
that represents growth or decline over an extended period of time. 

A wavelike fluctuations of observations from a time series data around the trend indicates a 
cyclical pattern. 

Fluctuations repeating themselves year after year imply seasonal pattern. These fluctuations 
are influence by seasonal factors and usually have the effects of the same magnitude every 
year. 

In this chapter, we uncover these patterns and examine different models used for predictions. 

4.2. Autocorrelation Coefficient 

When a measurements of variables are made over time, observations in different time periods 
frequently tend to be related. This relation is measured by autocorrelation coefficient that is 
formally defined as a correlation between a variable and itself lagged by one or more time 
periods. The following equation provides a formula for computing the lag 𝑘 autocorrelation 
coefficient between observations 𝑦௧ and 𝑦௧ି௞ 

𝑟௞ =
∑ (𝑦௧ − 𝑦ത)(𝑦௧ି௞ − 𝑦ത)௡

௧ୀ௞ାଵ

∑ (𝑦௧ − 𝑦ത)ଶ௡
௧ୀଵ

, 𝑘 = 0,1,2 … (4.2.1) 
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where 

𝑟௞ is the autocorrelation coefficient for a lag of 𝑘 periods 

𝑦ത is the mean value of the series 

𝑦௧ is the observation in time period 𝑡 

𝑦௧ି௞ is the observation at time period 𝑡 − 𝑘 which is 𝑘 time periods earlier than 𝑡 

The autocorrelation coefficient obtains values within the interval of [-1,1] and implies a certain 
degree of similarity between the original data and its lagged version. 𝑟௞ = 1 implies a perfect 
positive correlation between the original data and the lagged data while 𝑟௞ = −1 implies a 
perfect negative correlation. The following example illustrates the computation. 

Example 

Leo Johnson, a small book store owner is interested to know how much autocorrelation 
between the book sales data and its lagged version is. He computes the autocorrelation 
coefficients for 𝑘 = 1 as shown in the following figure 

 

Figure 4.2.1 

𝑟ଵ ≈ 0.6 implies that the correlation between the originally observed data and its lagged data 
by one period of time are correlated by 60%. So, the successive book sales are somewhat 
correlated with each other. The values in E column are computed by the formula “=(C3-
AVERAGE($C$2:$C$13))*(D3-AVERAGE($C$2:$C$13))” in E3. Note that computations start 
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from the E3 because of the index of summation in the numerator of (4.2.1). The formula in F2 
is “=(C2-AVERAGE($C$2:$C$13))^2”. The denominator in (4.2.1) is the summation of all 
squared differences between the observed values of 𝑌 and its mean value. Ultimately, the sum 
of the values in column E represents the numerator of (4.2.1) and the sum of all values in 
column F represents the denominator. Their quotient is 𝑟ଵ computed in E15. 

If on the other hand Leo computed the autocorrelation coefficient for lag 𝑘 = 2, it would be 
computed as follows 

 

Figure 4.2.2 

The column D in the above figure contains the lagged data by 2 periods of time. Computations 
of the numerator of (4.2.1) starts from E4 now with the formula “=(C4-
AVERAGE($C$2:$C$13))*(D4-AVERAGE($C$2:$C$13))” . F column remains the same and 
the 𝑟ଶ coefficient in E15 turns out to be 0.4618. So, Leo can conclude that the original data is 
correlated to its lagged version of one period of time than two. In the context of the book sales, 
this means that successive book sales are more correlated with each other than the book sales 
of every second month. 
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4.3. Error Estimators 

Residual in the text above was defined as  

𝑒௧ = 𝑦௧ − 𝑦ො௧ 

the difference between the actually observed value 𝑦௧ and its forecast value  𝑦ො௧. In the 
following sections we examine various forecasting models to obtain 𝑦ො௧. Regardless of the 
model, we can measure the forecast error in different ways. Measures of forecast errors help 
evaluate a forecasting technique and estimate parameters of a given model by its optimization. 

One method for measuring a forecasting technique is the mean absolute deviation (MAD). It 
measures forecasting accuracy by averaging absolute deviations of the forecast value from the 
actually observed value 

𝑀𝐴𝐷 =
1

𝑛
෍ |𝑦௧ − 𝑦ො௧|

௡

௧ୀଵ

 
(4.3.1) 

MAD is a useful measure on its own. It is expressed in the same units as the original time series 
and provides an average deviation regardless of direction. 

Another way of evaluating a forecasting technique is mean squared error (MSE).  

𝑀𝑆𝐸 =
1

𝑛
෍(𝑦௧ − 𝑦ො௧)ଶ

௡

௧ୀଵ

 
(4.3.2) 

It first sums the squared deviations from time series and its forecast and then divides by 
number of observations. Computation of the MSE frequently leads to extremely large values. 
Its usefulness becomes clear when we need to provide an analytical derivations of parameters 
of a given forecasting method. In particular, since MSE is the average of squared deviations, it 
is an easily differentiable function and hence, minimization problem given the model  𝑦ො with 
some parameters are analytically solvable.  

The square root from MSE is the root mean squared error (RMSE) which brings MSE back to 
units of original time series and thus, the magnitude of RMSE is interpreted in the same units. 

𝑅𝑀𝑆𝐸 = ඩ
1

𝑛
෍(𝑦௧ − 𝑦ො௧)ଶ

௡

௧ୀଵ

 

(4.3.3) 
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Sometimes it is useful to compute the forecasting errors in percentages. Mean absolute 
percentage error (MAPE) measures the average percentage deviations in absolute values. So its 
value shows the magnitude of deviation in percentage and is always positive 

𝑀𝐴𝑃𝐸 =
1

𝑛
෍

|𝑦௧ − 𝑦ො௧|

|𝑦௧|

௡

௧ୀଵ

 
(4.3.4) 

 

Note that the value of MAPE is not defined if 𝑦௧ = 0 for any of 𝑡 = 1, … , 𝑛. 

In order to determine whether a forecasting method is biased, showing consistently low or 
high values, mean percentage error (MPE)  is used. It is computed by taking the deviation 
between observed and forecast value in each period and dividing by actual value for that 
period.  

𝑀𝑃𝐸 =
1

𝑛
෍

𝑦௧ − 𝑦ො௧

𝑦௧

௡

௧ୀଵ

 
(4.3.5) 

If the resulting value is close to zero, then the model is unbiased. Large positive value implies 
that the model is consistently underestimating and large negative value implies that the model 
is consistently overestimating.  

Choice of the forecast error estimators depends on the situations described above. But the 
decision whether the selected forecasting model is producing reasonably accurate results 
depends on the judgment of values of selected error estimators. The following sections examine 
forecasting methods. 

4.4. Simple Moving Average 

Moving average method is based on smoothing historical data. The objective is to use past 
observations to forecast future values of the time series. The moving average method is 
appropriate to be used for forecasting when factors affecting the time series have stabilized and 
the environment in which the time series data is generated is generally unchanging. A simple 
moving average (SMA) method averages all past observations in the time series to obtain the 
forecast value for the next period 

𝑦ො௧ାଵ =
1

𝑡
෍ 𝑦௜

௧

௜ୀଵ

 
(4.4.1) 

where 𝑡 is the number of observations and 𝑦௜ is the actual observed value of the time series 
corresponding to time period 𝑖. 
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Whenever a new observation becomes available, the forecast for the next period is 

𝑦ො௧ାଶ =
1

𝑡 + 1
෍ 𝑦௜

௧ାଵ

௜ୀଵ

 

 

(4.4.2) 

So, the forecast value evolves with the appearance of new observation in then time series data. 
The equation (4.4.1) uses all past observations starting from the first data point to the last 
available one. However, when dealing with many time series simultaneously, the data storage 
may be an issue. The following formula provides a way to compute the forecast value based 
only on the most recent observed data point and the most recent forecast 

𝑦ො௧ାଶ =
𝑡𝑦ො௧ାଵ + 𝑦௧ାଵ

𝑡 + 1
 (4.4.3) 

 

As long as we keep storing the most recent data, there is no longer a need to average all past 
observations to forecast the next period value. 

 

Example 4.4 

ABC Transit Petroleum Inc. imports and distributes gasoline. John Meyer, a sales manager is 
responsible for weekly reporting and forecasting the gasoline sales (measured in thousands of 
liters). In order to forecast the sales for the next week, he observes sales data from the past 
month 
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Figure 4.4.1 

Based on the observations on 14 weeks in the past, John forecasts the sales for the next (15th) 
month to be  𝑦ොଵହ = 251 786 liters. When the new data 𝑦ଵହ = 221 000 becomes available at 
the end of 15th week, John computes the residual between the observed and forecasted value 
to be -30 786 liters. So the company sold 30 786 less litters than predicted. In order to forecast 
the sales for the 16th week, John proceeds with (4.4.2) using only the most recent observed 
value 𝑦ଵହ and the most recent forecast value  𝑦ොଵହ. The forecast value for 16th week is 249 733 
which is 144 267 litters less than 394 000 that was actually sold. 
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Figure 4.4.2 

Computations of the forecast values for the simple moving average are illustrated in the Figure 
4.4.2. Note that computations in the column C begin from the cell C3 which contains the 
formula “=AVERAGE($B$2:B2)”. The starting cell of the array in the argument of the 
AVERAGE function is frozen. The results are the predicted values for the next time period. 
e.g. the row corresponding to 𝑡 = 5 implies that the company sold 381 000 litters of gasoline 
in the 5th week while the forecast value for this time period would have been 209 500 litters 
which was found by averaging the previous 4 observations. In column D, the residuals are 
computed for each time period. 

 

 

 

 

 

 

 



88     T. Toronjadze (ed.) 

 

4.5. Moving Average 

Simple Moving Average computes the average value of all past observations. The assumption 
here is that all the observed values have equal weight in computation of the forecast value. 
What if the most recent observations are more relevant than all the available data points? The 
term moving average (MA) is the generalized version of SMA which enables us to average the 
only the most recent observations 

𝑦ො௧ାଵ =
𝑦௧ + 𝑦௧ିଵ + ⋯ + 𝑦௧ି௞ାଵ

𝑘
=

1

𝑘
෍ 𝑦௜

௧

௜ୀ௧ି௞ାଵ

 
(4.5.1) 

 

where 𝑘 is the number of terms in the moving average. So, only the most recent consecutive 
𝑘 data points are averaged in order to forecast the value of the next period. 

 

Example 4.5 

John Meyer from Example 4.4 forecasts the values of the time series for the time periods 15 
and 16 based on (4.5.1) now using 𝑘 = 4. The following figure illustrates the computations of 
forecasts for the time periods from 5 to 16. 

 

Figure 4.5.1 

The formula in the cell C6 is “=AVERAGE(B2:B5)”. Note that the cell references in the 
AVERAGE function are not frozen. The column D computes the residuals with a simple 
formula subtracting 𝑦ො௜ from 𝑦௜ in each cell. 
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John Meyer has two methods in his hands now – the simple moving average and moving 
average. He can base his choice of which method to use on one of the error estimators from 
section 4.3. He selects the model with smaller MSE. The following figure illustrates the 
computation of MSE 

 

Figure 4.5.2 

The column E values are squares of corresponding values in the column D. According to (4.3.2), 
the average of these values is the mean squared error computed in H1. Similar computation of 
MSE for the simple moving average  would yield MSE = 16 579.62. 
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Figure 4.5.3 

Note that as long as the simple moving average computation includes more data, it has more 
components in the computation of residuals (D2, D3) and thus, its MSE is expected to be 
higher. However, increasing the number of observations offsets this effect and comparison by 
MSE is gives reasonable result. 

4.6. Double Moving Average 

One way of forecasting time series with a linear trend is a double moving average (DMA) 
method. It has a double smoothing effect of the original data. The predicted value by the DMA 
method is based on two sets of average values. First, average is computed from 𝑘 number of 
the original data. Next this set is averaged once again. The resulting forecast value is a function 
of both, the average from the first set and the average from the second set. 

The procedure of building a DMA method is as follows. First, equation (4.5.1) is used to 
compute the moving average of 𝑘 order 

𝑀௧ =
𝑦௧ + 𝑦௧ିଵ + ⋯ + 𝑦௧ି௞ାଵ

𝑘
=

1

𝑘
෍ 𝑦௜

௧

௜ୀ௧ି௞ାଵ

 
(4.6.1) 

 

next, the following equation is used to compute the second moving average 
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𝑀௧
ᇱ =

𝑀௧ + 𝑀௧ିଵ + ⋯ + 𝑀௧ି௞ାଵ

𝑘
=

1

𝑘
෍ 𝑀௜

௧

௜ୀ௧ି௞ାଵ

 
(4.6.2) 

 

Considering the forecast is to be made 𝑝 periods ahead, the ultimate equation used to make the 
forecast is 

𝑦ො௧ା௣ = 𝑎௧ + 𝑏௧𝑝 (4.6.3) 
 

where  

𝑎௧ = 𝑀௧ + (𝑀௧ − 𝑀௧
ᇱ) = 2𝑀௧ − 𝑀௧

ᇱ (4.6.4) 
and 

𝑏௧ =
2

𝑘 − 1
(𝑀௧ − 𝑀௧

ᇱ) (4.6.5) 

 

Example 4.6 

Ben Fischer is a local video game store manager. His job is to prepare financial reports and 
make forecasts for weekly rentals. He has observations for 15 weeks and plans to forecast the 
video game rentals for the next week (16th). The following figure illustrates the original time 
series and two moving averages, first by (4.6.1) and second by (4.6.2). 

 

Figure 4.6.1 
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The column B contains the original time series. The values of 𝑀௧ in the C column is computed 
according to (4.6.1) by “=AVERAGE(B2:B4)” in the cell C4. Similarly, the 𝑀௧

ᇱ values in the D 
column correspond to equation (4.6.2) by “=AVERAGE(C4:C6)” in D6. 

In order to make forecast for 16th week, Ben needs to use (4.6.3)-(4.6.4).  

 

Figure 4.6.2 

In Figure 4.6.2, 𝑎௧ values are computed in column E by “=2*C6-D6” in E6. 𝑏௧ values are 
computed in column F by “=C6-D6” in F6. The forecast values in column G are computed for 
𝑝 = 1. Ben forecasts the rentals for the week 16 to be 500 units of video games. In the last 
column, residual values squared are computed whose average is the MSE computed in G20. 

4.7. Simple Exponential Smoothing 

Simple Exponential Smoothing is a moving average, exponentially weighted for all previously 
observed values. The objective of the model is to first estimate the current level and then use 
this estimated level to forecast future values of the time series. The simple exponential 
smoothing model is often appropriate for modelling data without predictable upward or 
downward trend. The model is based on averaging past values of a given time series in an 
exponentially decreasing order. The idea behind it is that the most recent observation receives 
the largest weight 𝛼 (0 < 𝛼 < 1) and is assumed to be the most significant determinant of the 
forecast. The next most recent observation receives less weight 𝛼(1 − 𝛼) which is less than 𝛼. 
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The observation one time period older receives the weight 𝛼(1 − 𝛼)ଶ which is even less and 
so forth. 

The forecast for time 𝑡 + 1 is the weighted sum of the most recent observation 𝑦௧ and the 
forecast for time 𝑡, which is  𝑦ො௧. The most recent value 𝑦௧ is assigned a weight 𝛼 and the weight 
for the forecast value 𝑦௧ෝ  is (1 − 𝛼). So, the ultimate forecast equation is 

𝑦ො௧ାଵ = 𝛼𝑦௧ + (1 − 𝛼)𝑦ො௧ (4.7.1) 
which can be rewritten as 

𝑦ො௧ାଵ = 𝛼𝑦௧ + (1 − 𝛼)𝑦ො௧ = 𝑦ො௧ + 𝛼(𝑦௧ − 𝑦ො௧) (4.7.2) 
 

In this form, the forecast value for the next period of time is the predicted value for the 
previous period plus the weighted residual. According to (4.7.2), 𝑦ො௧ turns out to be 

𝑦ො௧ = 𝛼𝑦ො௧ିଵ + (1 − 𝛼)𝑦ො௧ିଵ 

Substituting this equation in (4.7.2) yields 

𝑦ො௧ାଵ = 𝛼𝑦௧ + (1 − 𝛼)𝑦ො௧ = 𝛼𝑦௧ + (1 − 𝛼)[𝛼𝑦௧ିଵ + (1 − 𝛼)𝑦ො௧ିଵ] (4.7.3) 
 

𝑦ො௧ାଵ = 𝛼𝑦௧ + 𝛼(1 − 𝛼)𝑦௧ିଵ + (1 − 𝛼)ଶ𝑦ො௧ିଵ  
 

Continued substitution of  𝑦ො௧ , 𝑦ො௧ିଵ, 𝑦ො௧ିଶ, … results in  

𝑦ො௧ାଵ = 𝛼𝑦௧ + 𝛼(1 − 𝛼)𝑦௧ିଵ + 𝛼(1 − 𝛼)ଶ𝑦௧ିଶ + 𝛼(1 − 𝛼)ଷ𝑦௧ିଷ + ⋯ (4.7.4) 

So the predicted value  𝑦ො௧ାଵ is an exponentially smoothed value. Past observations become less 
and less relevant as more weights are given to more recent values. The speed with which the 
“relevance” of past observations in forecasting the next value decreases, depends on the weight 
𝛼. The value of 𝛼 can be optimized by minimizing one of the error estimator from Section 4.3.  

Example 4.7  

A local cable TV provider was established in 2014. The number of additional subscriptions sold 
is a time series data observed every quarter from 2015. The Figure 4.7.1 below shows the 
quarterly observations for the number of additional subscribers from 2015 till 2020. In total 
there are 21 observations in column C. Assuming 𝛼 = 0.1 (which will later be optimized), the 
forecast values are computed in column D according to (4.7.2). In D1 we have the same value 
as in C1. The reason for this is that by convention 𝑦ଵ = 𝑦ොଵ is to be taken. All the rest of the 
computations of  𝑦ො௧ values depend on the previously observed and forecast values based on 
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(4.7.2). So, the cell D2 contains the formula “=$I$1*C2+(1-$I$1)*D2” extended throughout the 
column below. The column E computes residuals for each period of time and the column F is 
the squares of the values in E.  

 

Figure 4.7.1 

 The very last value in the cell D23, which is 𝑦ොଶଶ = 604 new subscribers, is the forecast for the 
time period 22 (second quarter of 2020), meaning that the number of subscribers will increase 
by 458 at 𝑡 = 22. Note that 𝛼 = 0.1 was assumed above. This alpha produces MSE = 23 558.86 
in I2 by averaging the values in the column F. What if there can be found another value of 𝛼 
which produces lower MSE? This would mean that the exponential model with lower 𝛼 better 
fits the observed sample of time series. The best possible value of 𝛼 can be found by minimizing 
MSE. For this purpose, Solver package from Data tab is used as illustrated below 
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Figure 4.7.2 

In the Set Objective text box, the cell containing the value to be optimized (minimized) is 
selected. That is I2 with the MSE value. In By Changing Variable Cells text box, the variable 
to be optimized is selected. For our model this is 𝛼 in the cell I1. Next, since we have 0 < 𝛼 <

1, the value of 𝛼 is subject to constraints 
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Figure 4.7.3 

 

Figure 4.7.4 

Once both constraints are in place, clicking the Solve button in Figure 4.7.2 yields different 
value of 𝛼 minimizing MSE and therefore, changing the forecast values in column D. The 
result is shown in Figure 4.7.5. The forecast value for the time period 22 now is 708 which is 
obtained by 𝛼 = 0.3036 producing the minimum MSE of 20 604.15. No other value of 𝛼 can 
produce lower MSE. 
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Figure 4.7.5 

As a conclusion, the cable TV provider expects the number of subscribers to increase by 610 
in the second quarter of 2020. 

4.8. Holt’s Exponential Smoothing Model Adjusted for Trend 

In simple exponential smoothing, the level around which the time series fluctuates, is assumed 
to be changing over time and an estimate of the current level is required. What if in addition 
to estimating the current level, the observed time series data is trending? Then the necessity 
of anticipating upward or downward movements arises. So, in addition to the level estimate, 
the linear function estimating the trend is required. Holt’s exponential smoothing method 
adjusted for trend intends to estimate linear trend in a time series and can be used to generate 
more accurate results for trending data.  

The trend estimation on the other hand, requires estimate of the current slope and the current 
level. Holt’s model weights the level and slope by different weights for each. These estimates 
themselves evolve over time as new observations show up and can be regarded as time series.  

In particular, the level estimate in the Holt’s model for a given period of time is 

𝐿௧ = 𝛼𝑦௧ + (1 − 𝛼)(𝐿௧ିଵ + 𝑇௧ିଵ) (4.8.1) 
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where 𝐿௧ିଵ and 𝑇௧ିଵ are the previous estimates of the level and trend respectively and 𝛼 is the 
smoothing constant satisfying 0 < 𝛼 < 1. The trend estimate is given by 

𝑇௧ = 𝛽(𝐿௧ − 𝐿௧ିଵ) + (1 − 𝛽)𝑇௧ିଵ (4.8.2) 
where 0 < 𝛽 < 1. Ultimately, the forecast for 𝑝 periods ahead into the future is given by 

𝑦ො௧ା௣ = 𝐿௧ + 𝑝𝑇௧ (4.8.3) 
 

So the forecast value at time 𝑡, 𝑝 periods into the future is the linear function of 𝑝 given the 
level and trend estimates fixed for the time period 𝑡. 

 

Example 4.8 

The objective of this example is to solve the forecasting problem given in Example 4.7 using 
the Holt’s method. Figure 4.8 shows the computations with 𝛼 = 0.3 and 𝛽 = 1. The forecasts 
are computed for 𝑝 = 1. Current levels at each time 𝑡 are computed by the formula 
“=$K$1*C3+(1-$K$1)*(D2+E2)” in D2 and the trends are computed by “=$K$2*(D3-D2)+(1-
$K$2)*E2” in E2. Note that by convention 𝐿ଵ = 𝑦ଵ and 𝑇ଵ = 0 are taken. The forecast for the 
second quarter of 2020 is additional 749. MSE, which is the average of the sum of squared 
residuals is computed in the cell K4 and equals 20 437.63. 
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Figure 4.8.1 

On the other hand we should optimize the model by minimizing MSE as shown in the 
following figure. 
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Figure 4.8.2 

The constraints for the values of 𝛼 and 𝛽 were added as follows 

 

Figure 4.8.3 
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Figure 4.8.4 

Solving the MSE minimization problem in Figure 4.8.2 gives the following results 

 

Figure 4.8.5 

So we obtain a more accurate model with 𝛼 = 0.2232 and 𝛽 = 0.2271 producing minimum 
possible MSE which is 20 180.66 which is smaller than MSE computed by 𝛼 = 0.3 and 𝛽 =

0.1. Based on this formula, taking the trend into consideration, the expected value for the new 
subscribers in the period 22 is 770. At this point, the local cable TV provider has a more 
accurate forecast compared to the forecast made by the simple exponential smoothing method. 
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Figure 4.8.6 shows the original time series data and the forecasts based on the optimized 𝛼 and 
𝛽 on the same chart: 

 

Figure 4.8.6 

 

4.9. Holt-Winters’ Exponential Smoothing Model Adjusted for Trend and Seasonal 
Variation 

In Holt’s model, the simple exponential smoothing method was extended by taking trend into 
account. If we observe the data in Examples 4.8 and 4.7, we notice that the observations for 
the first quarter each year are consistently higher than the observations of the third quarter. 
So, the seasonal pattern emerges that needs to be addressed in order to obtain a better model, 
taking one more component into consideration and therefore, producing more accurate 
results. To address this problem, a seasonal index is added to the existing Holt’s model and we 
obtain Holt-Winters’s Exponential Smoothing model estimating current level, trend and 
seasonal index for each period of time as follows 

The level estimate is given by 

𝐿௧ = 𝛼
𝑦௧

𝑆௧ି௦
+ (1 − 𝛼)(𝐿௧ିଵ + 𝑇௧ିଵ) (4.9.1) 
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where 𝑆௧ି௦ is the seasonality estimate defined by (4.9.3) below. The trend estimate is 

 

𝑇௧ = 𝛽(𝐿௧ − 𝐿௧ିଵ) + (1 − 𝛽)𝑇௧ିଵ (4.9.2) 
 

and the seasonality estimate defined as 

𝑆௧ = 𝛾
𝑦௧

𝐿௧
+ (1 − 𝛾)𝑆௧ି௦ (4.9.3) 

 

where 𝛾 is the smoothing constant for the seasonality estimate satisfying 0 < 𝛾 < 1. 𝑠 in the 
index of the seasonality coefficient is the constant, time periods in which the seasonality 
pattern persists. Ultimately, the forecast for 𝑝 periods into the future is 

𝑦ො௧ା௣ = (𝐿௧ + 𝑝𝑇௧)𝑆௧ି௦ା௣ (4.9.4) 
 

Example 4.9 

By adding the seasonality component to the model, the Example 4.8 is further extended. The 
following figure demonstrates computations for the Hold-Winter’s method 

 

Figure 4.9.1 

The initializing values of the level, trend and seasonality are by convention taken as 𝐿ଵ =

𝑦ଵ, 𝑇ଵ = 0 and 𝑆ଵ = 1. The index of the seasonality coefficient in (4.9.3) is 𝑠 = 4 in this example 
since we concluded that the seasonality pattern keeps repeating every quarter. So, the 
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computations begin from 𝑡 = 5. The column D computes the levels according to (4.9.1) by 
“=$L$1*C6/F2+(1-$L$1)*(D5+E5)” in D6. The trend component values are computed in column 
E according to (4.9.2) by “=$L$2*(D6-D5)+(1-$L$2)*E5”. The seasonality component is 
computed in column F based on (4.9.3) by “=$L$3*C6/D6+(1-$L$3)*F2” in F6. The forecasts 
taking all these three components into consideration are computed in the column G based on 
(4.9.4) by “=(D6+E6*$L$4)*F3”. The highlighted value, 512 is the forecast value for 22nd month. 
The computations described above were based on 𝛼 = 0.4, 𝛽 = 0.1 and 𝛾 = 0.3. The mean 
squared error, computed in L4 is 54 017.56. The result is  𝑦ොଶଶ = 712 new subscribers for the 
month 22. On the other hand, optimization gives the different and more accurate results. The 
following figure demonstrates the optimization by Solver 

 

Figure 4.9.2 

The constraints now involve all 3 constants 
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Figure 4.9.3 

 

Figure 4.9.4 

The result of optimization is given below 

 

Figure 4.9.10 
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which sets 𝛼 = 0.1019, 𝛽 = 0.3464 and 𝛾 = 1. The constant of seasonality was obtained to be 
1. We see an explicit seasonal pattern in the time series. As a result, MSE = 49 790.27 which is 
lowest among all models described above. As a conclusion, the cable TV provider has a more 
accurate forecasts based on the Holt-Winters’ method which predicts  𝑦ොଶଶ = 745. 
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Chapter 5.  Inventory Management 

5.1. Introduction 

Inventory is defined as a stock of items maintained by an organization to meet demands of 
customers. Every type of organization keeps some form of inventory. Most frequently, demand 
is uncertain and can be considered as random. An organization is concerned to maintain a safe 
level of inventory to meet uncertain demand. Stocks of inventories may be built up to meet 
the demands of cyclical or seasonal nature. Similarly, a company may purchase a large amount 
of inventory to take advantage of price discounts and meet the surge in anticipated demand. 
On the other hand, maintaining an excessive amount of inventory may result in unreasonable 
cost.  

There are several types of cost associated with inventory management. The most basic cost is 
the cost of carrying. This is simply the cost of holding items in storage. Carrying cost depends 
on the amount of inventory being stored and the length of storage time.  

Another type of cost is the ordering cost. Ordering cost is the cost associated with replenishing 
the stock of inventory being held. Ordering cost usually reacts inversely to carrying costs. 
When the volume of inventory ordered is high, fewer orders are required, so the ordering cost 
reduces. However, as long as the volume to be maintained increases, the carrying cost follows 
accordingly. 

The last type of cost covered in this chapter is the shortage cost. Shortage cost is associated 
with a loss caused from inability to meeting a customer demand. Part of shortage cost may not 
be measurable in dollar amounts (like loss of goodwill and reputation resulting in the loss of 
customers). In this chapter, we consider shortage costs measured in dollar amounts. Shortage 
costs may occur when the storage cost is unaffordable. So the shortage cost acts inversely to 
the carrying costs. As the amount of inventory maintained in storage increases, so does the 
carrying costs while the shortage costs decrease. 

The goal of this chapter is to find an optimal balance (in the sense of total cost minimization) 
between the amount of inventory to order and carry, number of orderings and timing of 
ordering.  
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5.2. Basic Economic Order Quantity Model (EOQ) 

The most basic form of the inventory model is the basic economic order quantity model. The 
objective in this model is to obtain an optimal order size that minimizes total cost. The total 
cost consists of the carrying cost and the ordering cost. The time span between ordering time 
and replenishment time is called the lead time. 

There are various assumptions in this model 

- The model does not take shortages into account 
- Lead time is assumed to be constant for every order 
- Demand is not random, it is assumed to be constant over time 
- Quantity ordered is received all at once 

 

These assumptions are shown in the following figure 

 

Figure 5.2.1 

In the figure, 𝑄 denotes the order size which is constant and same for all orders. 𝑅 is the level 
at which a new order is placed. This occurs at times 𝑡ଵ, 𝑡ଷ, 𝑡ହ, … At times 𝑡ଶ, 𝑡ସ, 𝑡଺, … the 
quantities reach zero and the orders are received immediately all at once. Lead times (or 
delivery times) illustrated in the figure are constant and equal. Since demands are assumed to 
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be constant every time, the quantity depletes at a constant rate. The average inventory on an 
annual basis maintained is equal to  

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 =
𝑄

2
 (5.2.1) 

 

Figure 5.2.2 

Since (5.2.1) holds, meaning the available inventory on an annual basis is 𝑄\2, the annual 
carrying cost is given by 

𝑎𝑛𝑛𝑢𝑎𝑙 𝑐𝑎𝑟𝑟𝑦𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 = 𝐶௖

𝑄

2
 (5.2.2) 

 

where 𝐶௖ is the unit carrying cost per year. On the other hand, another type of cost in this 
model is the ordering cost. Since the demand was assumed to be known and constant, the 
number of orders per year is 𝐷/𝑄. As long as the cost per order, 𝐶௢ is known, the annual cost 
of ordering is 

𝑎𝑛𝑛𝑢𝑎𝑙 𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 = 𝐶௢

𝐷

𝑄
 (5.2.3) 

 

Since in this simplest setting we assumed absence of the shortage cost (when quantity depletes 
to zero, replenishment occurs immediately, setting the inventory size back to 𝑄), the total 
inventory cost consists of these two costs (5.2.2) and (5.2.3) only 
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𝑇𝐶 = 𝐶௖

𝑄

2
+ 𝐶௢

𝐷

𝑄
 (5.2.4) 

 

All quantities in (5.2.4) are constants and known except 𝑄. Total cost as a function of an 
independent variable 𝑄 is illustrated in the following figure 

 

Figure 5.2.3 

The objective is to minimize the total cost function. 𝑄௢௣௧ in Figure 5.2.3 is the total cost 
minimizing quantity. The total cost is minimized for the value of 𝑄 where the carrying cost 
coincides with the ordering cost. Total cost minimization problem is solved by differentiating 
the function with respect to 𝑄, equating the derivative function to zero and solving for 𝑄. The 
solution is 𝑄௢௣௧. It has a geometric meaning shown in the figure above. In particular, at 𝑄 =

𝑄௢௣௧, the tangent line of the total cost function is horizontal. This is the point where minimum 
value is achieved. So, differentiating (5.2.4) and equating to zero yields 

𝑑𝑇𝐶

𝑑𝑄
= −

𝐶଴𝐷

𝑄ଶ
+

𝐶௖

2
= 0 

𝑄௢௣௧ = ඨ
2𝐶଴𝐷

𝐶௖
 

 

(5.2.5) 
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As a result 

𝑇𝐶௠௜௡ = 𝐶଴

𝐷

𝑄௢௣௧
+ 𝐶଴

𝑄௢௣௧

2
 

 
Example 5.2 
 

Fast Vehicles Inc. is the largest retailer of tires for sport cars. The company has several large 
retail stores each getting supplies from the same warehouse. Inventory is kept in the central 
warehouse and distributed to the retail stores as demanded on a daily basis. The company has 
the carrying unit cost of $0.7 per tire and an ordering cost is $140. Demand is constant each 
ear and estimated to be 8 000 tires per year. The company would like to know the optimal 
order sizes minimizing the total cost. In addition, the company is interested in the number of 
orders it will need to make annually and the time between orders. 

The following figure demonstrates the computations 

 

Figure 5.2.4 

The quantities in B1, B2 and B3 are given. B4 computes the optimal quantity according to 
(5.2.5) that minimizes the total inventory cost computed in B5 by (5.2.4). So, 1789 tires must 
be ordered to minimize the total cost to $1 252.2. In total, 4 orders will be made per year and 
time between consecutive orders is 82 days. Note that the assumption in the above example is 
that there are 365 working days per year. If we only consider working days excluding the 
weekends and holidays, the remaining number of days would be divided by the number of 
orders per year in order to obtain the time between orders (which is called the cycle time). 

5.3. EOQ Model with Non-Instantaneous Receipt 

The EUQ model with non-instantaneous receipt assumes that the orders are not received all 
at once whenever placed. So the replenishment continues over some time which is constant. 
The rate at which the order is received over time is known as the production rate. The rate at 
which inventory is demanded is also assumed to be constant. However, the assumption that 
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the shortage is not possible persists here as well. Thus the production rate exceeds the demand 
rate. Note that in the model the ordering cost remains the same. The fact that the stocks are 
being replenished over time does not affect the ordering cost. However, the carrying cost 
changes since the average inventory level (5.2.1) is different. In addition, the maximum 
inventory level is no longer 𝑄, but a quantity lower than 𝑄. The reason for this is that the 
order quantity is depleted during the order receipt period. The following figure demonstrates 
the specifics of the model 

 

Figure 5.3.1 

At times 𝑡ଵ, 𝑡ଷ, 𝑡ହ, the orders are placed and the stocks start to fill at some rate. At times 𝑡ଶ, 𝑡ସ, 𝑡଺, 
replenishment of stocks end. The maximum level the inventory can reach is 

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑙𝑒𝑣𝑒𝑙 = 𝑄 −
𝑄

𝑝
𝑑 = 𝑄(1 −

𝑝

𝑑
) (5.3.1) 

 

Correspondingly, the average inventory is determined as 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑙𝑒𝑣𝑒𝑙 =
𝑄

2
(1 −

𝑑

𝑝
) 

 

(5.3.2) 

The carrying cost is affected by the level of inventory and is defined as 

𝑡𝑜𝑡𝑎𝑙 𝑐𝑎𝑟𝑟𝑦𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 = 𝐶௖

𝑄

2
(1 −

𝑑

𝑝
) 

 

(5.3.3) 
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where 𝐶௖ is the carrying cost per unit of inventory. Total annual inventory cost is the sum of 
the carrying cost and the ordering cost. The latter remains unchanged 

𝑇𝐶 = 𝐶௢

𝐷

𝑄
+ 𝐶௖

𝑄

2
(1 −

𝑑

𝑝
) (5.3.4) 

In order to minimize the total cost by the quantity, proceeding by differentiating the function 
with respect to quantity variable and equating to zero yields 

𝑑𝑇𝐶

𝑑𝑄
= −𝐶௢

𝐷

𝑄ଶ
+

𝐶௖

2
൬1 −

𝑑

𝑝
൰ = 0 

from which 

𝑄௢௣௧ = ඩ
2𝐶௢𝐷

𝐶௖(1 −
𝑑
𝑝

)
 

(5.3.5) 

 

Example 5.3 

In the previous example, Fast Vehicles Inc. had an ordering cost of $140 and a carrying cost of 
$0.7 per tire annually. In addition, the annual demand was 𝐷 = 8 000. Since we assume 365 
working days per year, it turns out that the daily demand is 𝑑 = 8000/365 = 21.92. On the 
other hand, the production rate, (which must satisfy 𝑝 > 𝑑) is 𝑝 = 160 units per day. 

Optimal value of 𝑄 and the corresponding minimum total cost is computed below 

 

Figure 5.3.2 

In Figure 5.3.2 above, 𝑄௢௣௧ is computed by (5.3.5). The production run length is interpreted as 
time it takes to replenish the stock to 𝑄௢௣௧ and is computed as follows 
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𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑟𝑢𝑛 𝑙𝑒𝑛𝑔𝑡ℎ =
𝑄

𝑝
 

Number of production runs is computed as 

# 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑟𝑢𝑛𝑠 =
𝐷

𝑄
 

Ultimately, the maximum level of inventory is computed according to (5.3.1). As a result, the 
company has 4 production runs in total during a year, each lasting for 12 days receiving 1995 
tires per order. Maximum inventory level that can be reached is 1721 units of tires. The total 
cost resulting from these numbers is $1 164. 

5.4. EOQ Model with Possibility of Shortages 

In the previous two models, the shortages were not allowed. At any point in time, the 
inventory stocked were enough to meet the external demand. In this section, we allow the 
possibility of shortage. When shortage occurs, the company is not able to meet the demand 
immediately. However, another assumption in this section is that the demand not met because 
of the shortage can be back ordered. Thus the customer gets the order later and all demand is 
eventually met. The following figure illustrates this scenario 

 

Figure 5.4.1 

The maximum inventory never reaches 𝑄 because the demand during shortage must be 
compensated by late delivery. So, the maximum inventory level reached is 𝑄 − 𝑆. 𝑄 and 𝑆 are 
inversely related. Greater the value of 𝑄, less the shortage but the carrying cost increases 
accordingly. 𝑡ଵ denotes the time it takes for the inventory level (starting from 𝑄 − 𝑆) to deplete 
completely. So, from the complete replenishment, it takes 𝑡ଵ to start the shortage period. The 
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shortage period lasts for 𝑡ଶ after which the stocks are replenished and set back to the maximum 
level 𝑄 − 𝑆 again and cycle starts over again. The total cost now consists of three components 
– the total ordering cost for which the ordering cost per unit remains unaffected, the total 
carrying cost which is diminished as shortage increases, and the total shortage cost which 
increases as 𝑄 decreases. 

All of these costs are computed by the following formulas 

𝑡𝑜𝑡𝑎𝑙 𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 = 𝐶௢

𝐷

𝑄
 (5.4.1) 

𝑡𝑜𝑡𝑎𝑙 𝑐𝑎𝑟𝑟𝑦𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 = 𝐶௖

(𝑄 − 𝑆)ଶ

2𝑄
 

(5.4.2) 

𝑡𝑜𝑡𝑎𝑙 𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒 𝑐𝑜𝑠𝑡 = 𝐶௦

𝑆ଶ

2𝑄
 

(5.4.3) 

 

In the last formula 𝐶௦ is the unit cost of shortage. 

Combining these components results in the total inventory cost function 

𝑇𝐶 = 𝐶௦

𝑆ଶ

2𝑄
+ 𝐶௖

(𝑄 − 𝑆)ଶ

2𝑄
+ 𝐶௢

𝐷

𝑄
 

(5.4.4) 

 

Figure 5.4.2 
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The slope of the total cost function is zero wherever it has a horizontal tangent line. In this 
model we do not only optimize 𝑄, but also the shortage level 𝑆. Skipping the differentiation 
steps as shown in previous sections, it can be shown that the optimal quantity and the shortage 
levels are given by 

𝑄௢௣௧ = ඨ
2𝐶௢𝐷

𝐶௖
൬

𝐶௦ + 𝐶௖

𝐶௦
൰ 

(5.4.5) 

 

𝑆௢௣௧ = 𝑄௢௣௧ ൬
𝐶௖

𝐶௖ + 𝐶௦
൰ (5.4.6) 

The time during which inventory is on hand 𝑡ଵ shown in Figure 5.4.1, is  

𝑡ଵ =
𝑄 − 𝑆

𝐷
 (5.4.7) 

 

and the time during which there is a shortage is 

𝑡ଶ =
𝑆

𝐷
 (5.4.8) 

 

Example 5.4 

The examples in the previous sections are extended here by allowing the shortages. All 
quantities remain the same, the only additional constant here is the shortage cost per unit of 
tire, which is 𝐶௦ = 1.85. In addition, note that in this model the replenishment occurs 
immediately. So there are no longer the need for 𝑝 (production run) and 𝑑 (demand per day) 
quantities. 

 

Figure 5.4.3 

Here the optimal quantity to order each time is 2 100 units of tire and the optimal shortage is 
577 tires. These quantities minimize the total cost and set it to $1 067. The total ordering, 



Decision Modelling 117 

 
carrying and shortage costs individually are computed according to (5.4.1), (5.4.2) and (5.4.3) 
shown below 

 

Figure 5.4.4 

Ultimately, the times of inventory on hand and times of shortage computed in the cells B11 
and B12 below. 

 

Figure 5.4.5 

The results are as follows. The time during which inventory is on hand is 0.19 year which is 
69.5 days. And the time during which there is a shortage is 0.07 year, or 26.3 days. 
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5.5. Discounts on Ordered Quantity 

The basic economic order quantity model examined in Section 5.1 only considers the carrying 
cost and the cost of order. Adding an additional component – price of purchase transforms the 
model by taking the possible discounts into account. Depending on the quantity ordered, there 
may be two scenarios – in case of a quantity discount, carrying costs may be fixed and constant 
or it may be computed as a percentage of the purchase price. This section covers the first case 
implying that the carrying costs are constant. 

Purchase prices differ depending on the order size.  

Quantity Price 
𝑞ଵ ≤ 𝑄 < 𝑞ଶ 𝑝ଵ 
𝑞ଶ ≤ 𝑄 < 𝑞ଷ 𝑝ଶ 
𝑞ଷ ≤ 𝑄 < 𝑞ସ 𝑝ଷ 
𝑞ସ ≤ 𝑄 < 𝑞ହ 𝑝ସ 

… … 
Table 5.5.1 

𝑞௜ < 𝑞௝, 𝑝௜ > 𝑝௝ , 𝑖 < 𝑗. So, the prices are set in a descending order in the table above. Greater 
quantity implies less purchase price. Given the values of cost of order,𝐶௢, cost of carrying, 𝐶௖ 
and demand, 𝐷 in the basic EOQ model, the total cost minimizing optimal quantity (ignoring 
the price discounts) is obtained by (5.2.5) to be 

𝑄௢௣௧ = ඨ
2𝐶௢𝐷

𝐶௖
 

(5.5.1) 

Total cost function now includes two elements from Section 5.2 – the carrying cost and the 
ordering cost, and an additional component, the purchase price to be paid 

𝑇𝐶 =
𝐶௢𝐷

𝑄
+ 𝐶௖

𝑄

2
+ 𝑃𝐷 (5.5.2) 

 

As long as the total cost minimizing quantity 𝑄௢௣௧ is given by (5.5.1), depending on its value, 
the purchase price, 𝑃𝐷 depends on this value and is taken from Table 5.5.1. 

Example 5.5  

Fast Vehicles Inc. in Example 5.2 had the carrying cost per tire 𝐶௖ = $0.7, ordering cost 𝐶௢ =

$140 and an annual demand of 8 000 tires. In addition, the following price discounts are 
offered by the supplier 
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Quantity Price 

1 ≤ 𝑄 < 500 $150 
500 ≤ 𝑄 < 1000 $130 

1000 ≤ 𝑄 < 5000 $120 
5000 ≤ 𝑄 $115 

Table 5.5.2 

e.g. the purchase price for an ordered quantity within 500 and 1000 is $130 while the price 
for a quantity within the range of 1000 and 5000 is $120.  

Figure 5.5.1 shows the computations of the optimal quantity and total cost corresponding to 
the price discount 

 

Figure 5.5.1 

The cell B4 computes 𝑄௢௣௧ according to (5.5.1) to be 1 789 units. This number falls within the 
range of 1000 and 2000. So, the purchase price is $120 computed in the cell B7. Total cost is 
computed in the column B9 which is $961 252.2. This cost is minimum attainable in terms of 
carrying and order costs. However, when the purchase price is added to it, further 
investigation is required to check if the quantity ordered should be increased to take advantage 
of larger discount. If instead of purchasing 1 789 units of tires, what if 2 000 is purchased? 
Figure 5.5.2 shows the total cost computed for 𝑄 = 2000 (this is no longer 𝑄௢௣௧ according to 
its definition from 5.5.1) 
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Figure 5.5.2 

In Figure 5.5.2, the quantity is set to 2 000. Corresponding purchase price is $115. Cost of 
ordering and carrying is recalculated accordingly. Most importantly, the total cost 
corresponding to this new purchase price now becomes $921 260 which is less than $961 252.2 
computed by 𝑄௢௣௧ = 1 789. So, as long as $921 260 < $961 252.2, the company should take 
the maximum discount price and order 2 000 units of tire. 

5.6. Discounts on Ordered Quantity with Constant Carrying Costs as a Percentage of 
Price 

In addition to the previous model where the discounts were applied for increasing amount of 
inventory ordered, the discount can be applied to the carrying costs. This section covers the 
case where the annual carrying cost is a fixed percentage 𝑝 (expressed in decimals) of the 
purchase price. Given the fixed percentage of the purchase price, Table 5.5.2 is 

Quantity Price Carrying Cost 
𝑞ଵ ≤ 𝑄 < 𝑞ଶ 𝑝ଵ 𝑝ଵ𝑝 
𝑞ଶ ≤ 𝑄 < 𝑞ଷ 𝑝ଶ 𝑝ଶ𝑝 
𝑞ଷ ≤ 𝑄 < 𝑞ସ 𝑝ଷ 𝑝ଷ𝑝 
𝑞ସ ≤ 𝑄 < 𝑞ହ 𝑝ସ 𝑝ସ𝑝 

… … … 

Table 5.6.1 

Given the values of carrying and ordering costs, the optimal quantity without a price discount 

is again given by 𝑄௢௣௧ = ට
ଶ஼೚஽

஼೎
 which is the same as (5.5.1). The total cost function is also 

identical to (5.5.2) and is defined as 𝑇𝐶 =
஼೚஽

ொ
+ 𝐶௖

ொ

ଶ
+ 𝑃𝐷.The only difference is that the 

purchase price 𝑃 and the carrying cost 𝐶௖ now both depend on 𝑄. 
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Example 5.6 

In Example 5.5, consider that in addition to the information given, there is also a discount in 
carrying cost depending on ordered quantity. Assuming he percentage of price is 𝑝 = 0.1. The 
following table illustrates the discounts for various ranges of quantities 

Quantity Price Carrying Cost 
1 ≤ 𝑄 < 500 $150 $150(0.1)=$15 

500 ≤ 𝑄 < 1000 $130 $130(0.1)=$13 
1000 ≤ 𝑄 < 5000 $120 $120(0.1)=$12 

5000 ≤ 𝑄 $115 $115(0.1)=$11.5 

Table 5.6.1 

The value of carrying cost without discount would be 𝐶௖ = $0.7. The given values of 𝐶௢ =

$140 and 𝐷 = 8 000 per year result in the optimal quantity (without discount) shown in the 
following figure 

 

Figure 5.6.1 

Since 𝑄௢௣௧ = 1788.85, then purchase price is $120 and the carrying cost is $13. Carrying costs 
in the column I are computed by taking 10% of the prices in the corresponding row. Ordering 
and carrying costs are computed as before and the total cost minimized is $961 252.2. In order 
to determine which order quantity is more beneficial, we compute the total cost for 2 000 units 
of tire. The computations are demonstrated below 
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Figure 5.6.2 

In case of 𝑄 = 2 000, the purchase price is set to $115 and the carrying costs reduces to 11.5. 
Ultimately, the total cost is $921 260 which is less than $961 252.2 obtained in the context of 
the basic EOQ model. So, the conclusion here is that the Fast Vehicles Inc. should take 
advantage of the discounts and order 2 000 instead of 1789 units.  
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Chapter 6.  Queuing Analysis 

6.1. Introduction 

Queues are one of the most common occurrences in everyone’s daily life. Anyone who goes 
shopping or to a movie, frequently experiences the inconvenience of waiting in line. Queues 
are not only related to inconvenience for customers and companies, but might also be related 
to significant expenses. The expense arises from the fact that customers seeing the queue prefer 
to avoid it and make a choice for the competitor’s service or buy an alternative product. Thus, 
reduction of queue is important for companies, especially with service related operations. 

Queues form when customers or things arrive at a rate faster than then can be served. Most of 
the organizations have sufficient service capacity to handle queues in the long run. 

Queuing analysis is a probabilistic form of analysis. So the managers have some operating 
characteristics to influence on - such as the average time a customer spends in the queuing line 
or the rate of arrival of new customers. There are several ways companies can influence these 
characteristics and speed up procedures of providing quality services.  

The objective of this chapter is to cover two of the most common types of queuing systems – 
a single server system and a multiple server system. The simple server system is the simplest 
form of queuing system. It is covered in Section 6.2 and demonstrates the fundamentals of a 
queuing system. The multiple server system involves more complex analysis and assumes that 
the single waiting line is being served by several servers. As a result, decisions aimed to reduce 
the queues and speed up the service are discussed. 

6.2. Single Server Model 

The simplest form of the queuing system is the Single Server system. The assumption is that 
the customers arrive at a Poisson arrival rate and are served at exponential rates. Denoting the 
number of customer arrival rate as 𝜆 (average number of customer arrivals per time period) 
and the customer service rate as 𝜇 (average number of customers served per time period), the 
model assumes that 𝜆 < 𝜇 holds. If the inequality did not hold (i.e. 𝜆 > 𝜇), the model would 
result in paradoxical situation when at some point the queue gets unreasonably long and the 
waiting line length approaches infinity in the long run.  

Customer in the queuing system is either in the waiting line or being served. Given the 
inequality 𝜆 < 𝜇, the probability that no customer is in the queuing system is given by 

𝑃଴ = 1 −
𝜆

𝜇
 (6.2.1) 
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This is equivalent to probability that the server is being idle. The probability that 𝑛 
customers are in the queuing system is 

𝑃௡ = ൬
𝜆

𝜇
൰

௡

𝑃଴ = ൬
𝜆

𝜇
൰

௡

൬1 −
𝜆

𝜇
൰ 

(6.2.2) 

The average number of customers in the queuing system is 

𝐿 =
𝜆

𝜇 − 𝜆
 (6.2.3) 

and the average number of customers in then waiting line is 

𝐿௤ =
𝜆ଶ

𝜇(𝜇 − 𝜆)
 

(6.2.4) 

The average time a customer spends in the queuing system is given by 

𝑊 =
1

𝜇 − 𝜆
=

𝐿

𝜆
 (6.2.5) 

and the average time a customer spends in the waiting line is 

𝑊௤ =
𝜆

𝜇(𝜇 − 𝜆)
 (6.2.6) 

The probability that the server is busy, or equivalently, the probability that the customer has 
to wait, known as the utilization factor is  

𝑈 =
𝜆

𝜇
 (6.2.7) 

Note that since the event – server is busy, is mutually exclusive to the event – server is idle, 
the utilization factor coincides with 1 − 𝑃଴. 

Manager of the company has several mechanisms to influence the queue length. First option 
is to add a new employee. In this case the customers in the same queue line are served faster. 
In other words, the service rate 𝜆 increases. However, the company has to make additional 
expense of hiring an additional employee. Another option is to add a new checkout counter. 
Construction of the new checkout counter is significantly costly and it includes the costs of 
each additional cashiers. This results in splitting the queue line into two lines. It is assumed 
that the customers divide themselves equally between the two lines making the arrival rates 
half of the prior arrival rate for a single checkout counter. Comparing the total costs of both 
options, the manager of a company decides which option to choose. Total cost is the sum of 
the cost of service and the cost of waiting in the queue. 
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Figure 6.2.1 

Example 6.2 

Toy Gift store sells toys for kids. The store manager has to frequently handle queues, especially 
on Christmas. The customer arrival rate is computed to be 𝜆 = 25 customers per hour while 
the customer service rate is 𝜇 = 30 per hour. By applying these values into the formulas above, 
the manager computes the following quantities 

 

Figure 6.2.2 

According to Figure 6.2.2, the probability that the server is idle is 𝑃଴ = 0.1667, which means 
that the server is serving customers by 𝑈 = 0.8333 probability (i.e. 83% of times the server is 
busy). On average there are 𝐿 = 5 customers waiting in the total queuing system (i.e. either 
waiting in the queuing line or being served). The average number of customers in the waiting 
line is 𝐿௤ = 4.17. The average time a customer spends in the waiting line is 𝑊 = 0.2 hours 
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which is 12 minutes and the average time a customer spends in the waiting line is 𝑊௤ =0.1667 
hours. 

Considering these results, the manager now has two options. She can either add a new 
employee or add a new checkout counter. Let us first consider the case of adding a new 
employee that results in additional weekly cost. 

In particular, addition of an extra employee will cost the Toy Gift store $140 per week. By 
analyzing statistical data, the manager concluded that by adding a new employee, for each 
reduced minute that customer spends in the waiting system, the store avoids a loss of $70 per 
week. This loss would have arisen from the situation when a customer simple walks away to 
avoid waiting in the queue. The effect of adding a new employee is the increase in service rate. 
If the previous service rate was 𝜇 = 30 customers served per hour, now it is 𝜇 = 40 per hour. 
Assuming the arrival rate remains the same 𝜆 = 25, we have the same quantities computed 
below 

 

Figure 6.2.3 

Note that by adding a new employee, the waiting time in the queuing system is reduced to 
𝑊 = 0.0667 which is 4 minutes. Initially it was 12 minutes. So there is 8 minute reduction in 
total waiting time. Since for each reduced minute the store saves the loss of $70, the total 
saving is $70 x 8 mins = $560 per week. Deducting the extra employee cost yields the profit of 
$560 - $140 = $520. 

The manager has another option. Instead of adding a new employee to the existing checkout 
counter, she can add a new checkout counter. This would split the waiting line in two separate 
lines with equal number of customers waiting in each. The effect of adding the new checkout 
counter would be the reduction in customer arrival rate. However, the cost of constructing it 
is an initial $5 000 plus an extra $180 per week for an additional cashier. The service rate would 
remain the same 𝜇 = 30, but the arrival rate per counter is now 𝜆 = 12.5 per hour. 
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Figure 6.2.4 

Since the arrival rate is reduced, the probability that the server is idle is increased to 𝑃଴ = 58% 
and the utilization factor (otherwise interpreted as the probability that the server is busy) is 
reduced to 𝑈 = 42%. The waiting time in the total queuing system is now 𝑊 = 0.0571 hours 
which is 3.43 minutes. Recall that initially this quantity was 12 minutes, so there is 8.57 
minutes reduction. This would save the store manager 8.57 x $70 = $600 per week. Subtracting 
the additional cost per week, which is $200 results in the final profit for the store which is 
$600 - $200 = $400 per week.  

Because the initial payment of this project was $5 000, it would take the store $5000/400=12.5 
weeks to break even from this project. After 12.5 weeks, the store starts to make profits of $400 
per week. 

6.3. Finite Queue Length 

In (6.2.2), 𝑃௡ is defined to be the probability of 𝑛 customers waiting in the waiting line. If 𝑀 is 
defined as the maximum number of customers allowed in the system, then 𝑃ெ is the probability 
that a customer will not be allowed in the system. This situation may arise because of some 
natural restrictions like the space for the waiting line may be limited or the model can be 
applied to cars in the drive queue of a fast food restaurant. Correspondingly, the equations 
(6.2.4), (6.2.5) and (6.2.6) can be rewritten as 

𝐿௤ = 𝐿 −
𝜆(1 − 𝑃ெ)

𝜇
 (6.3.1) 

which is the average number of customers waiting in the queuing line. The average time a 
customer spends in the entire queuing system is 

𝑊௤ =
𝐿

𝜆(1 − 𝑃ெ)
 (6.3.2) 
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and the average time a customer spends in the entire queuing system is 

𝑊௤ = 𝑊 −
1

𝜇
 (6.3.3) 

 The probability that the system is empty corresponds to the probability 𝑃଴ (i.e. no one is in 
the system) defined as 

𝑃଴ =
1 −

𝜆
𝜇

1 − ቀ
𝜆
𝜇

ቁ
ெାଵ 

(6.3.4) 

and the probability that the system is full and no customer will be allowed in is 

𝑃ெ = 𝑃଴ ൬
𝜆

𝜇
൰

ெ

 
(6.3.5) 

The average number of customers, 𝐿, used in the equation (6.3.1) is defined as 

𝐿 =
𝜆/𝜇

1 −
𝜆
𝜇

−
(𝑀 + 1) ቀ

𝜆
𝜇

ቁ
ெାଵ

1 − ቀ
𝜆
𝜇

ቁ
ெାଵ  

(6.3.6) 

 

Example 6.3 

Given the values of 𝜆 = 25, 𝜇 = 30 and the maximum number of customers allowed is 𝑀 = 5. 
The quantities in equations (6.3.1) – (6.3.6) are computed below 

 

Figure 6.3.1 
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So in the example above where the average number of arrivals per hour is 25 customers and 
the average service rate is 30 customers per hour with an additional restriction that maximum 
10 customers are allowed to wait in the system, the probability that no one is in the system is 
𝑃଴ = 0.1926. and nearly 𝑈 = 80% of times the server is busy. The probability that the 
maximum number of customers has been reached and no additional customer will be allowed 
is 𝑃ଵ଴ = 0.0311. The average number of customers waiting in the queuing system is 𝐿 =  3.29 
and on average they spend 𝑊 = 0.1358 hours in the system.  

If the queues are associated with costs as described in Example 6.2, the manager may proceed 
with one of the options described there – either consider adding new employees which will 
result in additional cost per period, or consider adding a new checkout counter with additional 
cashiers that will result in significant down payment and additional cost per period. 

6.4. Finite Calling Population 

For some waiting systems, there might be a limited number of potential customers that can 
arrive at a service facility. This situation is referred to as a finite calling population. Given the 
limited number of potential customers 𝑁 (we call it the population size), in the single server 
model with a Poisson arrival and exponential service times, the equations (6.2.1) – (6.2.7) can 
be redefined as 

𝑃଴ =
1

∑
𝑁!

(𝑁 − 𝑛)!
ቀ

𝜆
𝜇

ቁ
௡

ே
௡ୀ଴

 (6.4.1) 

which is the probability that no customer is in the waiting system. The probability that 𝑛 
customers are in the waiting system is defined as 

𝑃௡ =
𝑁!

(𝑁 − 𝑛)!
൬

𝜆

𝜇
൰

௡

𝑃଴, 𝑛 = 1,2, … , 𝑁 
(6.4.2) 

In addition, the average number of customers in the waiting line is 

𝐿௤ = 𝑁 −
𝜆 + 𝜇

𝜆
(1 − 𝑃଴) (6.4.3) 

and the average number of customers in the entire system (being served or waiting in a line) 
is given by 

𝐿 = 𝐿௤ + (1 − 𝑃଴) (6.4.4) 

The time a customer spends on average in the queuing line is  
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𝑊௤ =
𝐿௤

(𝑁 − 𝐿)𝜆
 (6.4.5) 

while the average time a customer spends in the queuing system is 

𝑊 = 𝑊௤ +
1

𝜇
 (6.4.6) 

 

Example 6.4 

Consider a Memory Devices Inc. manufacturing plant which produces memory cards of 
various sizes. Due to a large demand for production, the plant operates 7 days per week and 
has 10 automated manufacturing machines in total. Continuous operations causes the 
machines to break down frequently and they end up in the repairing queue. There is a repair 
person assigned to this task. In Memory Devices Inc. each machine operates on average of 180 
hours before it breaks down and a repair person is called. The average repair time of a single 
machine is 4 hours. The breakdown rate follows a Poisson distribution and the service time 
follows an exponential distribution. The company needs to analyze the machine idle time due 
to breakdowns and determine if the repair stuff is sufficient or needs to hire assistants to the 
senior repair person. 

Since 𝑃଴ in the equation (6.4.1) contains the denominator with the sum of numbers, it is 
convenient to have it computed separately. This is done in the following figure 

 

Figure 6.4.1 

The column F in the figure contain each of the elements in the sum of the denominator in 
(6.4.1). The sum of these numbers is the denominator as a single number. The following figure 
shows the computations of equations (6.4.1) – (6.4.6). Note that in Figure 6.4.2, the sum of the 
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values in the column F is not explicitly computed but is included directly in the cell B4 which 
computes 𝑃଴. As a conclusion, 𝑈 = 21.63% is the probability that the repair person is busy. 
Out of 10 operating machines, an average of almost 𝐿 = 0.27 which is 0.27/10=0.027=2.7% are 
broken down and waiting in the queue of being repaired. Each machine that is broken down 
is either waiting in the line or being repaired for 𝑊 = 4.94 hours. This is the time the machine 
is idle for. As long as the repair person is busy only for 21.63% of times,  it can be concluded 
that he is adequately handling his job and no assistant is needed to be hired. 

 

Figure 6.4.2 

 

6.5. The Multiple Server Model 

Up to this point, all models described the single server model implying that the customers 
waiting in the line would all end up with a single server. A little more complex scenario is the 
multiple server model where customers lined up in a single waiting line end up with different 
servers. The examples of this model would be the airport check in counter or a bank office. 
The assumption of the arrival rate being Poisson distributed and the service time being 
exponentially distributed still persists. In addition, there is an infinite calling population 
meaning the population size is not restricted (unlike in Section 6.4). 

The characteristics of this model is the arrival rate 𝜆, which is the average number of arrivals 
per time period. The service rate 𝜇 which is the average number of customers served per time 
period per server. 𝑐 is the number of servers and 𝑐𝜇 is the mean effective service rate for the 
model for which 𝑐𝜇 > 𝜆 must hold to avoid infinitely long queue. 

In this model, the probability that no customer is waiting in the queuing system is given by 
the following equation 



132     T. Toronjadze (ed.) 

 

𝑃଴ =
1

൤∑
1
𝑛!

ቀ
𝜆
𝜇

ቁ
௡

௖ିଵ
௡ୀ଴ ൨ +

1
𝑐!

ቀ
𝜆
𝜇

ቁ
௖ 𝑐𝜇

𝑐𝜇 − 𝜆

 (6.5.1) 

The probability that 𝑛 customers are waiting in the queuing system for 𝑛 > 𝑐 

𝑃௡ =
1

𝑐! 𝑐௡ି௖
൬

𝜆

𝜇
൰

௡

𝑃଴ 
(6.5.2) 

and for 𝑛 ≤ 𝑐 we have 

𝑃௡ =
1

𝑛
൬

𝜆

𝜇
൰

௡

𝑃଴ 
(6.5.3) 

The average number of customers in the entire queuing system is given by 

𝐿 =
𝜆𝜇 ቀ

𝜆
𝜇

ቁ
௖

(𝑐 − 1)! (𝑐𝜇 − 𝜆)ଶ
𝑃଴ +

𝜆

𝜇
 

(6.5.4) 

while the average number of customers in the waiting line is 

𝐿௤ = 𝐿 −
𝜆

𝜇
 (6.5.5) 

The time a customer spends on average in the waiting system is given by 

𝑊 =
𝐿

𝜆
 (6.5.6) 

and the average time a customer spends in the queuing line is 

𝑊௤ = 𝑊 −
1

𝜇
=

𝐿௤

𝜆
 (6.5.7) 

Finally, the probability that a customer arriving in the system must wait because all servers 
are busy at once is 

𝑃௪ =
1

𝑐!
൬

𝜆

𝜇
൰

௖ 𝑐𝜇

𝑐𝜇 − 𝜆
𝑃଴ 

(6.5.8) 

 

Example 6.5 

Consider again the Toy Gift store with 𝜆 = 25 per hour. In that example, the average service 
rate was 30 customers per hour. Suppose that instead of 30, now the average service rate is 12 
customers per hour per service representative. There are 3 store representatives (servers) in 
total. Adding a new representative leads to an additional weekly expense of $200 and for each 
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reduced minute of waiting in the system, the store saves $70. Using the formulas (6.5.1) – 
(6.5.8), the following figure illustrates the computations 

 

Figure 6.5.1 

The probability that there is no customer waiting in the queuing system is 𝑃଴ = 0.0982 and 
the probability that all servers are busy at the same time and the customer arriving in the 
system must wait for the service is 𝑃௪ = 0.4842. Since the denominator of 𝑃଴ includes the sum, 
it is separately computed in the cells B14 - B16. 

The average number of customers waiting in the system is 𝐿 = 3.1838 and they spend on 
average 𝑊 = 0.1274 hours. The average number of customers in the waiting line (waiting to 
be served) is 𝐿௤ = 1.1005 and they spend on average 𝑊௤ = 0.044 hours.  

If the manager decides to add a new server, that will result in the following computations 
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Figure 6.5.2 

Addition of the new server caused the probability that a customer has to wait to reduce to 
𝑃௪ = 0.195. The probability that the no customer has to wait is not increased significantly, 
only to 𝑃଴ = 0.1191. The average number of customers in the system with 𝑐 = 4 servers now 
is 𝐿 = 2.5073 and the average waiting time is 𝑊 = 0.1 hours which is 6 minutes.  

If the number of employees is raised to 𝑐 = 4 (i.e. increased by 1), the difference in waiting 
time in the system is 60(0.1274 − 0.1003) = 1.6204 minutes. So, the saving from this 
reduction is $70 x 1.6204 = $113.43. However, the weekly expense increased by $200. So, there 
is a negative profit. The manager decides that adding a new employee does not contribute to a 
positive profit and unlike the situation described in Example 6.2, no further action is taken in 
this sense.  

 


