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tributed empirical process W,, is based on the theory of innovation martingales.
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0. Introduction

The aim pursued in this paper is to construct asymptotically distribution-free
goodness-of-fit tests for testing parametric hypotheses on the distribution of point
processes, i.e., our object is to derive goodness-of-fit tests for the hypotheses

(1) An(:) € An = {Xa(-,0),0 € ©C R™}

on the intensity process An(-) of a point process.
For the particular case of the general multiplicative model of Aalen (see Ander-
sen, Borgan, Gill, Keiding (abbreviated below as ABGK) (1], p. 128, or Hjort [4])
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when A, (t) = a(t)Y,(t), where Y, is an observable random process, it is sufficient
to consider the hypothesis

a()e A={a(-,6), 6 €0 C R™}.

The hypothesis (1) means that there exist § and a sequence of A, € A, such
that the process

Np(t) - /Ot An(s,6)ds

is a martingale; here and everywhere N, denotes a sequence of point processes.
Later we will assume that there exists an increasing sequence of constants a,
such that

Mo (t,0) = M, (t)_a-1 Na( /A (s e)ds

is a square integrable martingale which under the hypothesis converges to a Gauss-
ian martingale M with mean zero and variance

EM?(t) = F(t,6).

For the definition of F(t,6) and conditions on A, and a, see Section 1.

If we knew the true value of the parameter 6, taking various functionals of
the process M, we could obtain asymptotically distribution-free goodness-of-fit
tests like x?, w?, Kolmogorov—Smirnov, etc. However, in our case (when testing a
parametric hypothe51s) we do not know the true value of  and it seems natural to
consider the process

Ma(t) = Mo(-,8) = a;l(Nn(t) - /Ot A,,(s,é’)ds),

where 6 is an estimate of 8 (see conditions (c5) in Section 1). However, unlike M,

the process M, is no longer a martingale and moreover, the classical change of time
u = F(t,6) does not lead to an asymptotically dlstrlbutlon free process: the limit
distribution of Hn(F‘l(»,B)) depends on F(-,6), # € ©. Therefore the traditional
way to construct asymptotically distribution-free tests is no more valid.

In this paper we propose another way of avoiding this problem and obtaining
asymptotically distribution-free nonparametric goodness-of-fit tests. The guideline
in this work is the idea of Khmaladze [6, 7] to base goodness-of-fit tests not on
the parametric empirical process (in the classical i.i.d. case) but on its innovation
process (see also Nikabadze, Khmaladze [9]).

One can find the description of Khmaladze’s idea in the context of point processes
in the monograph ABGK [1], pp. 464-469. Among recent papers on asymptotically
distribution-free tests for parametric hypotheses we mention Hjort [4]. The reader
may discover a very direct connection between the x? tests of Hjort [4] and Nikulin
[10] and the innovation of the present paper. This connection will be described in
more detail in Tsigroshvili [12] (to appear).

In Section 1 we introduce some notation and give conditions (c1)-(c5) which we
need throughout the paper. Furthermore we describe the nature of the process M,,
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and its limiting process L'. In Section 2 the Doob-Meyer decomposition is given for
the limiting process L' as a linear transformation Q of this process and some of its
properties are studied. In Section 3 we consider the transformation @ of the process
M, and prove a limit theorem for QM,,. In Section 4 we construct goodness-of-fit
statistics in two cases: when the function F(-,6) is known (only € is unknown) and
when the function F' is unknown. Finally, in Section 5 we present some examples
of the situations described in Section 4.

1. Description of the Limiting Process for M,(-,6)
Consider the process

@) Mo(t) = M (,8) = 0" (Na() = [ s, B) ),

where § is some estimate of the true value of the parameter 6.

In this section we want to clarify the nature of this process and show that M, (-, 5)
is asymptotically a projection of My (-,6) for a wide class of estimates ] (see (c5)
below).

First, let us formulate regularity assumptions on the intensity process A, (-, 8):

(c1) There exists a neighbourhood @¢ of 8 such that for all ¢ € {0, 7] there exist
first and second continuous derivatives of A, (-,8) and log As(:,6) w.r.t. 8 (see also
ABGK [1], p. 420).

(c2) There exist functions f(t,0) and hy(t,6),...,hn(t,0) and a sequence of
increasing nonnegative constants {a,},n = 1,2, ..., such that for all ¢ > 0 and for
all 6, be (SN

_2/\n(-,0) T—e¢ 74

an f(,0) - = OP(I)’

o2 Mn(5,0) — ZAn(s,0)

G 5, 0)

(¢3) foralli=1,2,...,m

—2’\n(':0)_
e !
T
:op(l) as n — 00.

-1

= 0p(1),
T-¢

¢}

T
= 0p(1) as n — oo.

0
"%—; log A (-, 8) — hi(-,0) '

Here and everywhere ||f(-)||% is the sup norm of the real-valued function f con-
sidered on the interval [a, b].
Introduce some notation:

Fo(@ )= a"? /t An(s,0)ds, hnp(s,0) = 33—9 logAn(s,8), F(t,0)= /t f(s,6)ds,
7? ’ T °
Cn(t,0) = / h(s,0)hT (s,8)dF,(s,8), C(t,0)= / h(s,0)hT (s,0)dF (s, 8).

The superscript T denotes the transposition. We assume that
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(c4) The matrix C(t,6) is positive definite and finite and the matrix C,(t,9) is
nonnegative definite and finite for allt < T and 0 € © if and only if A (¢,0) £ 0.

To derive the asymptotic form of the process for Mr,(-,g) we need the following
assumptions about the estimate 8

(c5) There exists an m-dimensional vector-function I(-, 8) such that:

/T T(s,0)l(s,0)dF,(s5,0) < c0 P-as.,

(3) o

/ 1(s, )K7 (s, 0)dF (s,0) = I,
0

with I, denoting the m-dimensional identity matrix, for which 8 admits the rep-
resentation:

y T
(4) an(F - 0) = /0 I(5,6)dMa (s, 6) + op(1).

The estimates with such properties can be exemplified by M-estimates, i.e., by
the estimates which are solutions of the equation:

T
/ U, (s, 0)dMn(s, 6) = 0,
0

where ¥, (-, 6) is an m-dimensional vector-function square integrable w.r.t. F(-,6).
In particular, the vector-function ¥,(-,8) = h,(-,6) corresponds to the maximum
likelihood estimate and in this case, as it is easy to show, the representation (4)
takes the form:

- g
an(6 - 0) = c-l(o,e)/ h(s, 0)dMn (s, 8) + op(1).
0

We use the notation 6 for the maximum likelihood estimate, using  for a general
estimate satisfying (c5).
By the Taylor series expansion around the true value of § we get

Ma(t,8) = Ma(t,6) — an(6 — 6)T /t ha(s,8) dFa(s,8) + 0p(1),
0

and under conditions (c1)-(c5) one can easily prove the following theorem (for the
proof see Hjort [4] or ABGK [1], p. 457).

Theorem 1. If conditions (c1)-(c5) are fulfilled, then on DI[0,T]
Ma(n8) 2 L), Mol B 2L0),  n—o,

where

t T
5) Li(t) = M(2) — /0 KT (s) dF (s) /0 I(s) M(ds)
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and

©) L) = M)~ [ PR O [ 1) M)
are Gaussian processes with zero mean and covariance functions
Rp(t,u) = F(t Au) — /o t kT (s)dF(s) /0 ’ I(5) dF(s)
- /0 ; hT (s)dF(s) /0 t I(s) dF(s)
4} /0 t hT (s) dF (s) /0 ’ 1(s)IT (s) dF (s) /0 : hT (s) dF (s);

and

Ri(t,u)=F(tAu)— _/0 hT (s) dF(s)C~1(0) /: h(s)dF(s).

Here M is a Wiener process with covariance function E (M M (u)) = F(tAu),

and = denotes the convergence in distribution. All functions above depend on the
parameter 6 but for the sake of brevity we omit it from notation. Hopefully this
will not lead to confusion.

Denote

/t h(s)dF(s) = g
0

and i =
oM, = L'(t), 1M, = L),

so that we have
- ! g
(7 M, = M; — g / I(s)dM(s),
r 0
T
(8) oM, = M; — g7 C~1(0) / h(s) dM(s).
0

Introduce the class C2[0,T] of functions ¢ € D[0,T] such that the derivative
w.r.t. F(-) exists and

(”¢”c)2 = /OT (5?;((?))2(1F(s) < oo.

Then, as it is well known, the bilinear functional on C2[0,T] x D[0, T] of the form

©) w0 = [ (38 axe)
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is well defined for almost all trajectories X of the Gaussian martingale M, while
on C?[0,T] x C?[0,T] this functional is a scalar product. Now, we are ready to
describe the structure of the limiting processes (7) and (8):

Lemma 1. The transformation M, is a projection and the transformation
M, is an orthogonal projection if and only if (3) holds. Projections are parallel
to the function g(t) on the subspace which is orthogonal w.r.t. (9) to the function

Jo (s)dF(s) or fy h(s)dF(s) respectively.
Proof. Indeed, for all 3 € R™

T
Hﬂﬁ=ﬁﬁﬂﬁA I(s)h7 (5) dF(s)8 = 0,

ie.,
T
fifin, = fing, i f U)K (5) dF(s) = Im
0

and
. T
49 s); IM()) = 7 s s
(67 [ yar(e); M) =57 [ 19ams
T T
—gF /D 1(s)kT (s) dF(s) /0 I(s)dM(s) =0. O

Note that in the case of II, the processes fIM; and ¢ T)c—1(0) fo h(s)dM(s)
are independent. By the nature of this lemma we will call the estimates which
satisfy (c5) “projecting” estimates (see Khmaladze [5)).

2. Doob-Meyer Decomposition for the Limiting Processes and Its
Properties

In this section we derive a one-to-one transformation @ of the processes L' and
L into a Wiener process and give some properties of this transformation.

Consider the filtration {M;}o<t<7,

(1) Hi=FMvo{ /OT h(s)dM(s)} = FM v o{ /tT h(s) dM(s) }.

We would like to derive the Doob—Meyer decomposition for the process M()
w.r.t. {M:}ogt<r. To do this, we proceed as follows: since M(dt) and ft h(s)dM(s)

are independent of FM, by redundant conditioning (see, e.g., Bremaud (3], p. 281)
we have

E(M(dt) | 7:) = E[M(dr) | /t h(s)dM(s)].

Now using the fact that for all ¢ € [0,T], M(dt) and ftT h(s)dM(s) are jointly
Gaussian random variables and

B[ /t " hs) aM(s)] = KT ()01 (1) /t " h(s)dM(s) dF (1),
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we obtain the following Doob-Meyer decomposition for M (:):

t T
(11) W) = M(t) - /0 KT (s)C=1(s) / h(u) dM (u) dF(s).

Equation (11) defines a linear transformation Q of M into W. Let us apply the
same transformation to processes L' and L. Then the following equalities hold.

Property 1. QM(t) = QL(t) = QL'(¢).

Proof. The proof of these equalities would follow from

dX(2)

QXM =0 il s

=hT(t)B forall B € R™.

To prove this fact, denote

T
vy = [ hedxe),
so that QX (t) = 0 is equivalent to
—dV(t) = h()AT()C 1)V (t)dF (1)

or
dicTi V()] =0,

which leads to C~1(t)V(t) = B8 or V(¢) = C(t)B. This equality is valid if and only

if 58 = pT(1)s. O

Note that this property clarifies our choice of the filtration. As a consequence of
it, an empirical analogue of QL'(-) (which we will consider in the following section)
will be independent of the estimate, and will have the same form for all projecting
estimates. This is certainly an advantage from the computational viewpoint.

By the following property we obtain a one-to-one relationship between the pro-
cesses L(-) and QL().

Property 2. If condition (c4) is satisfied, then the process

= T
(12) W(t) = L(t) —/ hT(s)C"‘(s)/ h(u) dL(u)dF(s)
0 ]
15 a Wiener process w.r.t. the filtration {H,}o<:<7 with
E(W@OW(w) = F(t Au),

and (12) has a unique inverse of the form

L(t) = W(t) + /0 “W(s) /0 " O () h(u)dW (w)dF(s).
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Proof. Being a linear transform of the Gaussian process L(-), the process W(-)
is also Gaussian. A direct calculation gives us

E(W@t)W(u)) = F(t Au).

To prove that L is the only inverse on the space of functions orthogonal to g(-)
w.r.t. (9), it is sufficient to show that the kernel of the transformation @Q contains
ouly functions of the form g7 ()3 for all 3 € R™. However, this is the same as
what was shown in the proof of Property 1. O

Rewrite transformation (12) in the following form:

T T
(13) W(t) = /0 k(t, s)dL(s) = /0 (I(s < 1) - r(t, 5)) dL(s),
where
(14) r(t,s) = / ™ KT (w)C () dF (w)h(s)
0

and I(A) denotes the indicator of the event A.
Now we state some easily verified properties of the kernel r(t,s) (cf. Khmalad-

ze [6]):
Property 3. If the kernel r(t, s) is defined by (14), then

T t
/ r(t, 5) dF(s) = 2 / r(t, 5) dF (s).
0 0
Proof. It is an easy consequence of the fact that
T
/ k2 (t,5)dF(s) = F(t). O
0

Property 4. r(t,s) is a Hilbert-Schmidi kernel.
Proof. From Property 3 by the Cauchy-Schwarz inequality we have

T t T 1/2
1"2 § = T S 1/2 2 S
/0 (t,s)dF(s) = 2 /0 (t,s) dF( )52(F(t?) ( /o r(t,8)dF(s))

and therefore -
/ r’(t,s)dF(s) < 4F (1),
0

so that finally

/ d f ! r’(t,s)dF(s)dF(t) < 2F*(T) < c0. O
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Property 5. On the functional space (C*[0,T};||-||.) the linear transformation
Q s continuous.

Proof. Consider
a5 lasl= ([ (S0’ ar(e)

= ( /0 ! ( jﬁ((?) — KT (s)C~(s) / " hw) d¢(u))2dF(s))

1/2

1/2

1/2

= (10iE+ [ @ doc0) [ hw agiw)

Consider now the quadratic form

T T
¥(s) = / KT () dg(u)C(s) ] (u) d(u).

By (c5), the matrix C(s) is positive definite, so 9(s) is positive for all s € [0,T),
and we have

W) = [ o / "W () B0 (h(a)) db(a)

< ( / ' ( / " @) do)C (W) dow)” / i (—;’ﬁ((';)))z ar ()"
T ,d 2 1/2
([ (™

le.,

v < [ (Fhed) arw
for all s € [0, 7] and therefore %(T) = 0.
Now from (15) we have

ol = swp 198 o 5
sec’o,r) |9l

So the linear transformation @ is bounded on C2?[0,7]. O

3. Weak Convergence of The Process QM,,(~,‘5).

In this section we prove that under the hypothesis the transformation @ of
M, (-, 0) converges in distribution in D[0, T] to a Wiener process W with covariance
function E(W ()W (u)) = F(tAu).

Consider the process

(16)  Wa(-8) = Ma(-,8) - /0 KT (5)C~(s) / h(w) dMn(u, 8) dF(s),
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or equivalently,
~ T ! T -
(17) Wa(t,0) = / k(t,s)dMp(s,9) = / (I(s <t)—r(t,s))dMn(s,0).
0 Jo

Theorem 2. Under the conditions (c1)—(c5), when the hypothesis holds,
Wa(,0) 2 W ()

on the space D[0,T].
To prove this theorem we need an auxiliary lemma.

Lemma 2. Let ¢,(-) € C?[0,T} and ||¢n ()|, = 0, as n — co. Then

1Q#n()IIT — 0.
Proof. By Property 5 of the previous section, ||¢(-)|l. — O implies [|Q¢n(-)]|, =
o(1), i.e.,
T d¢n(s) 2
./o (dF(s))dF(s)—»O as n — oo.
Now

10606 = | [ (S3) aro]” < @tunpry

asn—o0. O

Proof of Theorem 2. By the Taylor expansion
~ ~ T [t
Ma(t,8) = Ma(t, 8) — an (3 — 6) / ha(s, 8) dFn(s, 6) + £n(2),
0

where
) = =037 [ (Zrnto) - Brute ) as

and § is some point between 8 and 4.
By the linearity of @ and the fact that

Q(/o h(s,o)dF(s,e)) =0
we have -
Wa(t,8) = Wa(t,0) + Qen(t)

~ an(f - B)TQ(/Ot h(s, 6) dFp(s, 6) /Ot (s, 0)dF(s,6)).
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Here Wy (t,0) = QM,(t,0) is a martingale w.r.t. {F; }o<t<T With jumps a;;! and
quadratic variation (QM,,)(t, 0) = F,(t,6) which converges in probability to F'(t, )
for all ¢ € [0,T1, i.e., the conditions of the CLT for martingales are fulfilled (see,
e.g., Liptser and Shiryaev [8]) and so, on the space D[0,T], we have

QMa(-,0) 2 QM().

By the condition (¢2) both

an( - 0)7,(/: ho(s, 6) dFa (s, 6) — /t (s, 0) dF(5,0))
0 0

and €n(t) are the functions from C2[0,T] converging in probability in || - || ,-norm
to 0 and an application of Lemma 2 gives the assertion. 0O

4. Construction of The Goodness-of-Fit Statistics

The kernel of the transformation (16) depends on the limiting distribution func-
tion F' and also on the unknown value of parameter 8, r(t, s) = r(t, s, 0) (or k(¢, s) =
k(t,s,0)). Since the true value of 6 remains unknown we cannot use (17) directly
for the testing purposes. It is possible that the limiting function F(-,8) is also
unknown. As an example of such situation we consider the Aalen’s general multi-
plicative model (see Section 5 below). In this section we will show how to construct
goodness-of-fit statistics in both cases.

First, let us consider the situation when F(-,6) is known and only 6 is unknown.
An example of such situation is also given in Section 5, this is Musa’s model of
ABGK [1], p. 133, or van Pul [12]. In this case it seems natural to replace § by any

an-consistent estimate (like 8 or 5) in kernel k(-,-,0) and consider the process
— T -~ ~

(18) Wa(t) = f k(t, s,8) dMj (s, 6).

0
One can see that

~ — T ~ ~

(19) Wa(t,0) — Wa(t) :] (r(t,5,0) — r(t,s,0)) dMy(s,0),

0
where W, (t, 5) is given by (17). To prove that

Wa() 2 ()

on D[0, T}, we need some smoothness conditions on r(t,-,8) w.r.t. 6 for all t < 7.
These conditions are given below (see (c6) and Remark 3).

If now F(t,0) is an unknown function (i.e., the limiting A(Z, #) is unknown), it is
reasonable to use the kernel r,(¢, s, 6) instead of r(¢, s, ), where

(20) a(t,s,0) = /0 q RT (u,8)C Y (u, 0) dF,(u, 8)h(s,6)
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(and plug in g for 6). Hence, it seems that the following process is suitable in this
case:

T -~ ~ o~
(21) Wa(t) = / kn(t, s,0) M (s, 8) = QuMa(t, ),
0
where

ko(t,s,0) = I(s <t) — r,(t,s,0).

However, it is possibile to simplify the transformation @ first. Instead of calculating

E(M(dt) | He) = E(M(dt)l /t E h(s)dM (s))

in Section 2, let us consider the (m + 1)-dimensional vector-function HT(.) =
(1, RT(-)). Then

T T
(22)  E[mar)] / H(s)dM(s)| = BT ()2 (1) / H(w) dM(w)dF(t)
and instead of (11) of Section 2 we obtain the process

t T
23) W)= M(t) - /0 HT(5)C~(s) / H(u) dM(u)dF(s) = QM(t),

or equivalently,

T
(24) Wi(t) = /0 K(t,s)dM(s) = QM(2)
with
K(t,s)=I{s <t} - R(,s)
and
(25) R(t,s,0) = i ) HT (w)C~(u) dF (u)H(s).

Here C~1(t) is the inverse of the (m + 1) x (m + 1) matrix

T T
C(t,0) = /t H(s)HT (s)dF(s) = /t ( h(ls)~ h('s’;l(ﬁ)(s)> dF(s).

It is easy to show that W(¢) still has all properties of Section 2. At the same
time the pre-limiting process has a computational advantage. Namely, as a suitable
process to base the testing procedure on we will take the process

— T ~ ~ ~
(26) Wa(t) = /0 Kn(t, s,0)dMa(s, §) = QnMn(t, B)
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with
Kn(t,s,8) = I(s <t) — Ra(t,s,0)
and
tAs
(27) Rn(t,5,0) = HT (w)C; Y (v) dF,(w) H(s),
0
where

T s T .
Ca(t, 0) = /, H(s)HT ()dFa(s) = /t (h(ls) h(g)}fq.)(s)) dF(s).

Then unlike the process defined by (21), the process (26) has the following
Property 6.

T
Wat) = a3 / Kn(t, 5,8 dNa(s) = az'QnNn(t).
0

Proof. Thg kernel of transformatioll @), contains the functions of the form
fot n(s) dF,(s,0), with 5(s) = HT(t,s,0)¢ for any (m + 1)-dimensional vector £.
If we choose (T = (1,0,...,0), then we get

(28) /o ; HT (t,5,0) dFy(s,0)¢ = Fa(t,6),

which means that @, annulates the compensator of N,. O

Remark 1. In order R, in (27) to be well defined, we assume that

T -1
CH () = ( /u H(HT (a(s)ds) Ma(w)=0 il Calu) =0.

By Property 6 we see finally that the test statistic can be based on the process

(29 W) = a7 (Mol ~ [ Falt0,0) ().

Now we formulate the smoothness assumptions on R,(t, 7,8) w.r.t. parameter 6.
{(c6) Forn — o0, € —0

T
(30) a;? / sup
0

O Ra(t, ,9) = - Ba(t,7,0)] dlNa(r) = 0p(1)
19-8|le<e 00;

09;

and

4]
(31) /O 2, |6%R,,(t, 7, 0)dNn('r)| AN, (1) = Op(1).
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Here |9 — 0]|g denotes the Euclidean norm in R™.
In Section 5 we will see what these rather traditional conditions look like in
examples, while at the end of this section we prove the following

Theorem 3. If the conditions (c1)—(c8) are fulfilled, then, under the hypothestis,
on the functional space D[0,T)]

=2 oo 2
Wa(:) = W(),
where W(-) is a Wiener process with covariance function

E(W@#)W(u) = F(t Au).

To prove this theorem we need an auxiliary lemma.

Lemma 3. If the assumption (c2) holds, then for alle > 0,

sup
0<t<T-¢

(s)[ % n (s)] G~ 1(s)|_01,,(1) as n — oo.

Proof. Consider the (7, j)th component of the matrix Cp(u),

/ Hi(s)H; (8)az?An(s) ds = j Hi(s)H; (s) “nn(8) f? )(3) dF(s)

-/ T ) (5) [—"—J(?T")(S—) ~ 1] ar(s)

T—¢
+/u H;i(s)H;(s)dF(s)

T ) ) ar_xz’\n(s)
+ ft Hi(s)H;(s) —f(s—)—_

Now by (c2) the first and third summands in the right-hand side are small, while
the second summand tends to the (¢, j)th component of the matrix C(u), whenever ¢
is small. Therefore all components of the matrix C,, are close to the corresponding
components of the matrix C, and hence the determinants and all corresponding
minors of these matrices are close to each other, i.e., we have

| a7 (s).

sup |C;1(s)—C'1(s)| = 0p(1) as n — oo.
0<t<T—¢

An application of assumption (c2) again gives the assertion. O

Proof of Theorem 3. By the Taylor series expansion we obtain using Property 6

Walt) = az! [Nﬂ(t) - /0 ] Ra(t, s,0) cuv,,(s)]
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¢
= Mn(t) — / Ra(t,s,0) dMpy(s)
0
= T _, T ks -
—an(60—0) a, %Rn(t,s,ﬁ)dNn(s)-l—op(l)
0
T
= QM,(t) - / [Ra(t, s,8) - R(t, 5, 8)] dMa(s)
0
=5 T T 5 -
—an(6—06) a; / %Rn(t,s, 0)dNn(s) + 0p(1).
0

By Property 5 of Section 2, M,,(-) converges to the Wiener process and it is sufficient
to show that the other two terms are small (see, e.g., Billingsley [2], Theorem 4.1).
But

/0 C (Rult,5,0) — R(t, s,6))dMa(s)
i
/ H7(s)(C5(s) ";?")( ) A0 / H(u) dMo(u)dF(s)

and by Lemma 3 it suffices to consider only ¢ > T'—¢ and to show that the random

variables
/T
—E

/ CET (e (s) / ! H(w)dMa ()] dF (s)

T—¢

~1(5) / ! H(u) dM,,(u)l dF,(s)

and

are small in probability. But the first term is small because of Remark 1 above. To
show that the second term is small, we only need to apply Chebyshev’s inequality.
Now consider

T T
a’ | S Ra(t,5,0)dNa(s) = a”* /0 (2 Bt ,0) = - Balt,5,0)) dNa(s)

T 9
e /o g on(tr 5, 0) dMn(e) + o /0 S R(t,5,0)dFa(s,0).

Assumption (c6) guarantees that the first two integrals in the right-hand side
are small in sup-norm, while the third integral is equal to 0. Indeed, by Property 6,
QnFn(t,0) =0, or

-a—F(t 0)—/T-2R (t,5,0)dF,(s 0)+a‘2/TR(t o)iA( )d
aany—owaon») n\<, non’s’aens’)s

with

S Falt,0) = [ il 0)aF(a,0),



Goodness-of-Fit Tests for Parametric Hypotheses 75

so that

/OT %Rn(s,,,)m(s,g) - Qn(/ot hn(s,0)dFa(s,0)) = 0. O

Remark 2. Without condition (c6) we can still prove that
==
Wa () = W()

on D[0,T — ¢] for any ¢ > 0.

Remark 3. In the case of a known limiting F(¢,8) we need R(t,7,6) to satisfy
(30) and (31), and also (30) with a;;2dN,(7) replaced by dF(r,6). This additional
requirement is needed because now QF,(t,0) # 0. Thus we have an additional
condition, but on the essentially simpler kernel.

5. Examples

In this section we will derive the forms of the transformations @ for two different
models: for the so-called Musa’s model, in which the limiting function F is known,
and for Aalen’s multiplicative model, where this limiting function is unknown.

e Musa’s MODEL. In this model a, = n!/2 and the intensity of the point

process is
/\n(t, 01, 92) = n01 (92 = n”an(t"))

(see ABGK [1], p. 133, also van Pul [11]). According to this model the larger
number N(t) of “errors” we have detected, the smaller is the intensity of detecting
a new one.

It is easy to see that in this case

BE(2,61,02) = (67, (62— n ™ Na(t7) ™)

and

h(t,61,0,) = (91—1, (62 = F(t,€1,92))) )

where the limiting function F is kﬁown and has quite a simple form:
F(t, 01, 92) = 92 (1 = exp(—&lt)).

The kernel R(t, 7,0;,62) of the transformation @ in this model has the following
form:

Rt m,01,0) =01 | " G ((w) du+ e / " Gauw) du),

where

e —1—-u e¥ —1— ue*
C ] ’ Gz(u) = r 2 ’
(eu/2_e u/2) — 2 (eu/z_e u/2) —u?

G] (U) =
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and
p(u) = p(u,01) = 61(T — u).

Now we see that for all { < T and 7 < T the funcliou R{{, ,8;,02) does not depend
on 8, and is sufficiently smooth w.r.t. parameter 6,

o 1

g R0, 00,02) = 7 [O)(G1((0) + € Ga(u(0)

1
u(0)

- Wt A7) (Gt A )+ ™ Gautt A7) = (e~ [ Gate) da]
Hr
Clearly, condition (c6) is satisfied for R(t, 7,0,,67).

o AALEN’S MULTIPLICATIVE MODEL. In this model a,, = n!/2 again and the
intensity of the point process Ny, (t) is

An(t,0) = aft, 0)Ya (1)

(see, e.g., Hjort [4], ABGK [1]). In this case
0
hn(t,0) = h(t,0) = -6—alog a(t,9)

and P
HT(t,0) = (l, 7] loga(t,e)).

However, unlike the previous example, we do not know the limiting function for
n=!Aa(t,6), ie., for n71Y,(t) (we only assume that this limit exists). Now the
kernel of the transformation has the following form:

Ra(t70)= [ " B (u) B () Ya(w)a(u) duB (),

where -
Ba(u) = / Ya(s) dI(s)

and

1= [ (1) h(ﬁféffa)) ol

is an "extended partial information matrix”.

Let us demonstrate the construction of the goodness-of-fit process in the special
case when the parameter 8 is one-dimensional and the function a(t,8) = ¥(8) does
not depend on ¢. In such situation the extension of function h to function H gives
nothing new, becausg the components 1 and () of H are linearly dependent (for
possible degeneration of the matrix I see Tsigroshvili [12]. In this case we have

Ba(u) = %(6) [;7; log ¢(0)] /u : Yo(s)ds
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and the kernel R, (¢, 7,8) becomes free of §:

R.(t,1,6) = /:M (/uT Yn(S)ds)—lyn(u)du = —log (1 = M)

T
J3 Ya(s)ds

It is easy to verify that @, annulates the compensator () fot Yn(s)ds of Nu(t)
and finally the process W, has the following form:

Wa(t) =n~1/? [Nn(t) + /OT log (1 - %ﬁ%)dm(r)}.

Hence Wn() does not depend on the value of the parameter 6.

Acknowledgements: The authors would like to thank Professors E. V. Khmal-
adze and R. D. Gill for their helpful comments and constant attention to their work.

References

[1] P. K. Andersen, O. Borgan, R. D. Gill, and N. Keiding, Statistical Models Based on
Counting Processes, Springer, New York, 1993.
[2] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1966.
[3] P. Bremaud, Point Processes and Queues: Martingale Dynamics, Springer, New York,
1981.
[4] N. L. Hjort, Goodness-of-fit tests in models for life history data based on cumulative
hazard rates, Ann. Statist., 18 (1990), 1221-1258.
[5] E. V. Khmaladze, The use of w? tests for testing parametric hypotheses, Theory Probab.
Appl., 24 (1979), 283-301.
[6] E. V. Khmaladze, Martingale approach to the theory of goodness-of-fit tests, Theory
Probab. Appl., 26 (1981), 240-257.
[7] E. V. Khmaladze, Goodness of fit problem and scanning innovation martingales, Ann.
Statist., 21 (1993), 798-829.
[8] R. S. Liptser and A. N. Shiryaev, A functional Central Limit Theorem for semimartin-
gales, Theory Probab. Appl., 25 (1980), 667—688.
[9] A.M. Nikabadze and E. V. Khmaladze, On goodness of fit tests for parametric hypothesis
in R™, Soviet Math. Dokl., 35 (1987), 627-629.
[10]) M. S. Nikulin, Chi-square test for continuous distributions with shift and scale param-
eters, Theory Probab. Appl., 18 (1973), 559-568.
[11] M. C. J. van Pul, Asymplotic properties of a class of statistical models in software
reliability, Scand. J. Statist., 19 (1992), 1-23.
[12] Z.P. Tsigroshvili, Some notes on innovation martingales and goodness-of-fit tests, Proc.
A. Razmadze Math. Inst., 117, no.2 (1998) (to appear).

[Received December 1995, revised November 1997]



	Scan1
	Scan10001
	Scan10002
	Scan10003
	Scan10004
	Scan10005
	Scan10006
	Scan10007
	Scan10008
	Scan10009
	Scan10010
	Scan10011
	Scan10012
	Scan10013
	Scan10014
	Scan10015
	Scan10016
	Scan10017



